On Riesz Bases of Exponentials for Convex Polytopes with Symmetric Faces

نویسندگان

چکیده

We prove that for any convex polytope $\Omega \subset \mathbb{R}^d$ which is centrally symmetric and whose faces of all dimensions are also symmetric, there exists a Riesz basis exponential functions in the space $L^2(\Omega)$. The result new $d$ greater than one.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Centrally symmetric polytopes with many faces

We present explicit constructions of centrally symmetric polytopes with many faces: (1) we construct a d-dimensional centrally symmetric polytope P with about 3d/4 ≈ (1.316)d vertices such that every pair of non-antipodal vertices of P spans an edge of P , (2) for an integer k ≥ 2, we construct a d-dimensional centrally symmetric polytope P of an arbitrarily high dimension d and with an arbitra...

متن کامل

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...

متن کامل

On the number of faces of centrally-symmetric simplicial polytopes

I. Bfirfiny and L. Lovfisz [Acta Math. Acad. Sci. Hung. 40, 323-329 (1982)] showed that a d-dimensional centrally-symmetric simplicial polytope ~ has at least 2 d facets, and conjectured a lower bound for the number f~ of i-dimensional faces o f ~ in terms ofd and the number f0 = 2n of d vertices. Define integers ho . . . . . he by Z f~-1(x 1) d-' = ~ hi xd-'. A. Bj6rner conjectured (uni=O i=O ...

متن کامل

Asymmetry of convex polytopes and vertex index of symmetric convex

In [GL] it was shown that a polytope with few vertices is far from being symmetric in the Banach-Mazur distance. More precisely, it was shown that Banach-Mazur distance between such a polytope and any symmetric convex body is large. In this note we introduce a new, averaging-type parameter to measure the asymmetry of polytopes. It turns out that, surprisingly, this new parameter is still very l...

متن کامل

On the metric dimension of rotationally-symmetric convex polytopes∗

Metric dimension is a generalization of affine dimension to arbitrary metric spaces (provided a resolving set exists). Let F be a family of connected graphs Gn : F = (Gn)n ≥ 1 depending on n as follows: the order |V (G)| = φ(n) and lim n→∞ φ(n) = ∞. If there exists a constant C > 0 such that dim(Gn) ≤ C for every n ≥ 1 then we shall say that F has bounded metric dimension, otherwise F has unbou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Trends in mathematics

سال: 2021

ISSN: ['2297-024X', '2297-0215']

DOI: https://doi.org/10.1007/978-3-030-74417-5_11