On RGI Algorithms for Solving Sylvester Tensor Equations

نویسندگان

چکیده

This paper is concerned with studying the relaxed gradient-based iterative method based on tensor format to solve Sylvester equation. From information given by previous steps, we further develop a modified which converges faster than above. Under some suitable conditions, prove that introduced methods are convergent unique solution for any initial tensor. At last, provide numerical examples show our perform much better GI algorithm proposed Chen and Lu (Math. Probl. Eng. 2013) both in number of iteration steps elapsed CPU time.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Residual norm steepest descent based iterative algorithms for Sylvester tensor equations

Consider the following consistent Sylvester tensor equation[mathscr{X}times_1 A +mathscr{X}times_2 B+mathscr{X}times_3 C=mathscr{D},]where the matrices $A,B, C$ and the tensor $mathscr{D}$ are given and $mathscr{X}$ is the unknown tensor. The current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...

متن کامل

residual norm steepest descent based iterative algorithms for sylvester tensor equations

consider the following consistent sylvester tensor equation[mathscr{x}times_1 a +mathscr{x}times_2 b+mathscr{x}times_3 c=mathscr{d},]where the matrices $a,b, c$ and the tensor $mathscr{d}$ are given and $mathscr{x}$ is the unknown tensor. the current paper concerns with examining a simple and neat framework for accelerating the speed of convergence of the gradient-based iterative algorithm and ...

متن کامل

New approaches for solving large Sylvester equations

In this paper, we propose two new algorithms based on modified global Arnoldi algorithm for solving large Sylvester matrix equations AX + XB = C where A ∈ Rn×n, B ∈ Rs×s, X and C ∈ Rn×s. These algorithms are based on the global FOM and GMRES algorithms and we call them by Global FOM-SylvesterLike(GFSL) and Global GMRES-Sylvester-Like(GGSL) algorithms, respectively. Some theoretical results and ...

متن کامل

Theoretical results on the global GMRES method for solving generalized Sylvester matrix‎ ‎equations

‎The global generalized minimum residual (Gl-GMRES)‎ ‎method is examined for solving the generalized Sylvester matrix equation‎ ‎[sumlimits_{i = 1}^q {A_i } XB_i = C.]‎ ‎Some new theoretical results are elaborated for‎ ‎the proposed method by employing the Schur complement‎. ‎These results can be exploited to establish new convergence properties‎ ‎of the Gl-GMRES method for solving genera...

متن کامل

Parallel ScaLAPACK-Style Algorithms for Solving Continuous-Time Sylvester Matrix Equations

An implementation of a parallel ScaLAPACK-style solver for the general Sylvester equation, op(A)X−Xop(B) = C, where op(A) denotes A or its transpose A , is presented. The parallel algorithm is based on explicit blocking of the Bartels-Stewart method. An initial transformation of the coefficient matrices A and B to Schur form leads to a reduced triangular matrix equation. We use different matrix...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2022

ISSN: ['1027-5487', '2224-6851']

DOI: https://doi.org/10.11650/tjm/220103