ON RADICAL FORMULA IN MODULES

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On radical formula and Prufer domains

In this paper we characterize the radical of an arbitrary‎ ‎submodule $N$ of a finitely generated free module $F$ over a‎ ‎commutatitve ring $R$ with identity‎. ‎Also we study submodules of‎ ‎$F$ which satisfy the radical formula‎. ‎Finally we derive‎ ‎necessary and sufficient conditions for $R$ to be a‎ ‎Pr$ddot{mbox{u}}$fer domain‎, ‎in terms of the radical of a‎ ‎cyclic submodule in $Rbigopl...

متن کامل

on radical formula and prufer domains

in this paper we characterize the radical of an arbitrary‎ ‎submodule $n$ of a finitely generated free module $f$ over a‎ ‎commutatitve ring $r$ with identity‎. ‎also we study submodules of‎ ‎$f$ which satisfy the radical formula‎. ‎finally we derive‎ ‎necessary and sufficient conditions for $r$ to be a‎ ‎pr$ddot{mbox{u}}$fer domain‎, ‎in terms of the radical of a‎ ‎cyclic submodule in $rbigopl...

متن کامل

on direct sums of baer modules

the notion of baer modules was defined recently

On a Depth Formula for Modules over Local Rings

We prove that for modules M and N over a local ring R, the depth formula: depthR M + depthR N − depthR = depthR Tor R s (M,N) − s, where s = sup{i | Tor i (M,N) 6= 0}, holds under certain conditions. This adds to the list cases where the depth formula, which extends the classical Auslander-Buchsbaum equality, is satisfied.

متن کامل

A Weight Multiplicity Formula for Demazure Modules

We establish a formula for the weight multiplicities of Demazure modules (in particular for highest weight representations) of a complex connected algebraic group in terms of the geometry of its Langlands dual.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2011

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089511000243