On radial Fourier multipliers and almost everywhere convergence
نویسندگان
چکیده
منابع مشابه
On radial Fourier multipliers and almost everywhere convergence
We study a.e. convergence on L, and Lorentz spaces L, p > 2d d−1 , for variants of Riesz means at the critical index d( 1 2 − 1 p )− 1 2 . We derive more general results for (quasi-)radial Fourier multipliers and associated maximal functions, acting on L spaces with power weights, and their interpolation spaces. We also include a characterization of boundedness of such multiplier transformation...
متن کاملMean and Almost Everywhere Convergence of Fourier-neumann Series
Let Jμ denote the Bessel function of order μ. The functions xJα+β+2n+1(x 1/2), n = 0, 1, 2, . . . , form an orthogonal system in L2((0,∞), xα+βdx) when α+ β > −1. In this paper we analyze the range of p, α and β for which the Fourier series with respect to this system converges in the Lp((0,∞), xαdx)-norm. Also, we describe the space in which the span of the system is dense and we show some of ...
متن کاملThe surprising almost everywhere convergence of Fourier-Neumann series
For most orthogonal systems and their corresponding Fourier series, the study of the almost everywhere convergence for functions in L requires very complicated research, harder than in the case of the mean convergence. For instance, for trigonometric series, the almost everywhere convergence for functions in L is the celebrated Carleson theorem, proved in 1966 (and extended to L by Hunt in 1967...
متن کاملAlmost Everywhere Convergence of Series in L
We answer positively a question of J. Rosenblatt (1988), proving the existence of a sequence (ci) with ∑∞ i=1 |ci| = ∞, such that for every dynamical system (X,Σ, m, T ) and f ∈ L1(X), ∑∞i=1 cif(T ix) converges almost everywhere. A similar result is obtained in the real variable context.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the London Mathematical Society
سال: 2014
ISSN: 0024-6107
DOI: 10.1112/jlms/jdu066