On quasi-closed groups and torsion complete groups
نویسندگان
چکیده
منابع مشابه
On quasi-closed groups and torsion complete groups
© Bulletin de la S. M. F., 1967, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...
متن کاملA note on quasi irresolute topological groups
In this study, we investigate the further properties of quasi irresolute topological groups defined in [20]. We show that if a group homomorphism f between quasi irresolute topological groups is irresolute at $e_G$, then $f$ is irresolute on $G$. Later we prove that in a semi-connected quasi irresolute topological group $(G,*,tau )$, if $V$ is any symmetric semi-open neighborhood of $e_G$, then...
متن کاملQuasi-complete Q-groups Are Bounded
From the frontier of this paper, unless specified something else, let it be agreed that all groups into consideration are p-primary abelian for some arbitrary but fixed prime p written additively as is the custom when dealing with abelian group theory. The present short note is a contribution to a recent flurry of our results in [6]. Standardly, all notions and notations are essentially the sam...
متن کاملOn groups and fields interpretable in torsion-free hyperbolic groups
We prove that the generic type of a non-cyclic torsion-free hyperbolic group G is foreign to any interpretable abelian group, hence also to any interpretable field. This result depends, among other things, on the definable simplicity of a non-cyclic torsion-free hyperbolic group, and we take the opportunity to give a proof of the latter using Sela’s description of imaginaries in torsion-free hy...
متن کاملQuadratic Functions on Torsion Groups
A quadratic function q on an Abelian groupG is a map, with values in an Abelian group, such that the map b : (x, y) 7→ q(x + y) − q(x) − q(y) is Z-bilinear. Such a map q satisfies q(0) = 0. If, in addition, q satisfies the relation q(nx) = nq(x) for all n ∈ Z and x ∈ G, then q is homogeneous. In general, a quadratic function cannot be recovered from the associated bilinear pairing b. Homogeneou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin de la Société mathématique de France
سال: 1967
ISSN: 0037-9484,2102-622X
DOI: 10.24033/bsmf.1648