On qualitatively independent partitions and related problems
نویسندگان
چکیده
منابع مشابه
Judicious partitions and related problems
Many classical partitioning problems in combinatorics ask for a single quantity to be maximized or minimized over a set of partitions of a combinatorial object. For instance, Max Cut asks for the largest bipartite subgraph of a graphG, while Min Bisection asks for the minimum size of a cut into two equal pieces. In judicious partitioning problems, we seek to maximize or minimize a number of qua...
متن کاملProblems and results on judicious partitions
We present a few results and a larger number of questions concerning partitions of graphs or hypergraphs, where the objective is to maximize or minimize several quantities simultaneously. We consider a variety of extremal problems; many of these also have algorithmic counterparts.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Qualitatively characterizing neural network optimization problems
Training neural networks involves solving large-scale non-convex optimization problems. This task has long been believed to be extremely difficult, with fear of local minima and other obstacles motivating a variety of schemes to improve optimization, such as unsupervised pretraining. However, modern neural networks are able to achieve negligible training error on complex tasks, using only direc...
متن کاملClasses of Independent Partitions
Let X, Y be sets and let R, S be relations between X and Y . Let us observe that R ⊆ S if and only if: (Def. 1) For every element x of X and for every element y of Y such that 〈x, y〉 ∈ R holds 〈x, y〉 ∈ S. For simplicity, we adopt the following rules: Y is a non empty set, a is an element of Boolean , G is a subset of PARTITIONS(Y ), and P , Q are partitions of Y . Let Y be a non empty set and l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 1983
ISSN: 0166-218X
DOI: 10.1016/0166-218x(83)90072-0