On profinite groups in which centralizers have bounded rank

نویسندگان

چکیده

The paper deals with profinite groups in which centralizers are of finite rank. For a positive integer [Formula: see text] we prove that if is group the centralizer every nontrivial element has rank at most text], then either pro-[Formula: or Further, not virtually group, text].

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite groups have even more centralizers

For a finite group $G$‎, ‎let $Cent(G)$ denote the set of centralizers of single elements of $G$‎. ‎In this note we prove that if $|G|leq frac{3}{2}|Cent(G)|$ and $G$ is 2-nilpotent‎, ‎then $Gcong S_3‎, ‎D_{10}$ or $S_3times S_3$‎. ‎This result gives a partial and positive answer to a conjecture raised by A‎. ‎R‎. ‎Ashrafi [On finite groups with a given number of centralizers‎, ‎Algebra‎ ‎Collo...

متن کامل

finite groups have even more centralizers

for a finite group $g$‎, ‎let $cent(g)$ denote the set of centralizers of single elements of $g$‎. ‎in this note we prove that if $|g|leq frac{3}{2}|cent(g)|$ and $g$ is 2-nilpotent‎, ‎then $gcong s_3‎, ‎d_{10}$ or $s_3times s_3$‎. ‎this result gives a partial and positive answer to a conjecture raised by a‎. ‎r‎. ‎ashrafi [on finite groups with a given number of centralizers‎, ‎algebra‎ ‎collo...

متن کامل

Profinite Groups

γ = c0 + c1p+ c2p + · · · = (. . . c3c2c1c0)p, with ci ∈ Z, 0 ≤ ci ≤ p− 1, called the digits of γ. This ring has a topology given by a restriction of the product topology—we will see this below. The ring Zp can be viewed as Z/pZ for an ‘infinitely high’ power n. This is a useful idea, for example, in the study of Diophantine equations: if such an equation has a solution in the integers, then it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications in Contemporary Mathematics

سال: 2022

ISSN: ['0219-1997', '1793-6683']

DOI: https://doi.org/10.1142/s0219199722500559