On powers that are sums of consecutive like powers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On powers that are sums of consecutive like powers

1 Background The problem of cubes that are sums of consecutive cubes goes back to Euler ([10] art. 249) who noted the remarkable relation 33 + 43 + 53 = 63. Similar problems were considered by several mathematicians during the nineteenth and early twentieth century as surveyed in Dickson’sHistory of the Theory of Numbers ([7] p. 582–588). These questions are still of interest today. For example...

متن کامل

Perfect Powers That Are Sums of Consecutive Cubes

Euler noted the relation 63= 33+43+53 and asked for other instances of cubes that are sums of consecutive cubes. Similar problems have been studied by Cunningham, Catalan, Gennochi, Lucas, Pagliani, Cassels, Uchiyama, Stroeker and Zhongfeng Zhang. In particular, Stroeker determined all squares that can be written as a sum of at most 50 consecutive cubes. We generalize Stroeker’s work by determi...

متن کامل

On the alternating sums of powers of consecutive q-integers

In this paper we construct q-Genocchi numbers and polynomials. By using these numbers and polynomials, we investigate the q-analogue of alternating sums of powers of consecutive integers due to Euler. 2000 Mathematics Subject Classification : 11S80, 11B68

متن کامل

q-ANALOGUES OF THE SUMS OF POWERS OF CONSECUTIVE INTEGERS

Let n, k be the positive integers (k > 1), and let Sn,q(k) be the sums of the n-th powers of positive q-integers up to k − 1: Sn,q(k) = ∑k−1 l=0 ql. Following an idea due to J. Bernoulli, we explore a formula for Sn,q(k).

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research in Number Theory

سال: 2017

ISSN: 2363-9555

DOI: 10.1007/s40993-016-0068-0