On powers that are sums of consecutive like powers
نویسندگان
چکیده
منابع مشابه
On powers that are sums of consecutive like powers
1 Background The problem of cubes that are sums of consecutive cubes goes back to Euler ([10] art. 249) who noted the remarkable relation 33 + 43 + 53 = 63. Similar problems were considered by several mathematicians during the nineteenth and early twentieth century as surveyed in Dickson’sHistory of the Theory of Numbers ([7] p. 582–588). These questions are still of interest today. For example...
متن کاملPerfect Powers That Are Sums of Consecutive Cubes
Euler noted the relation 63= 33+43+53 and asked for other instances of cubes that are sums of consecutive cubes. Similar problems have been studied by Cunningham, Catalan, Gennochi, Lucas, Pagliani, Cassels, Uchiyama, Stroeker and Zhongfeng Zhang. In particular, Stroeker determined all squares that can be written as a sum of at most 50 consecutive cubes. We generalize Stroeker’s work by determi...
متن کاملOn the alternating sums of powers of consecutive q-integers
In this paper we construct q-Genocchi numbers and polynomials. By using these numbers and polynomials, we investigate the q-analogue of alternating sums of powers of consecutive integers due to Euler. 2000 Mathematics Subject Classification : 11S80, 11B68
متن کاملq-ANALOGUES OF THE SUMS OF POWERS OF CONSECUTIVE INTEGERS
Let n, k be the positive integers (k > 1), and let Sn,q(k) be the sums of the n-th powers of positive q-integers up to k − 1: Sn,q(k) = ∑k−1 l=0 ql. Following an idea due to J. Bernoulli, we explore a formula for Sn,q(k).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Research in Number Theory
سال: 2017
ISSN: 2363-9555
DOI: 10.1007/s40993-016-0068-0