On periodic solutions of forced pendulum-like equations
نویسندگان
چکیده
منابع مشابه
Counting periodic solutions of the forced pendulum equation
Let h be a holomorphic function with h(0) = 1. The number of zeros of h on a disk centered at the origin can be controlled by the maximum value of |h| on a larger disk. This is a classical result in complex analysis that is sometimes called Jensen’s inequality (see for instance [4]). In [2] Il’yashenko and Yakovenko applied this result together with the theory of conformal mappings to count the...
متن کاملPeriodic solutions of forced Kirchhoff equations
We consider Kirchhoff equations for vibrating strings and elastic membranes under the action of an external forcing of period 2π/ω and small amplitude ε. We prove existence, regularity and local uniqueness of 2π/ω-periodic solutions of order ε by means of a Nash-Moser iteration scheme; the results hold for parameters (ω, ε) in a Cantor-like set which has asymptotically full measure for ε→ 0.
متن کاملPeriodic Solutions of Pendulum-Like Hamiltonian Systems in the Plane
By the use of a generalized version of the Poincaré–Birkhoff fixed point theorem, we prove the existence of at least two periodic solutions for a class of Hamiltonian systems in the plane, having in mind the forced pendulum equation as a particular case. Our approach is closely related to the one used by Franks in [15], but the proof remains at a more elementary level. 2010 Mathematics Subject ...
متن کاملPeriodic Wave Shock solutions of Burgers equations
In this paper we investigate the exact peroidic wave shock solutions of the Burgers equations. Our purpose is to describe the asymptotic behavior of the solution in the cauchy problem for viscid equation with small parametr ε and to discuss in particular the case of periodic wave shock. We show that the solution of this problem approaches the shock type solution for the cauchy problem of the in...
متن کاملSubharmonic Oscillations of Forced Pendulum-Type Equations
where f is periodic with minimal period T and mean value zero. We have in mind as a particular case the pendulum equation, where g(x) = A sin x. First results on the existence of subharmonic orbits in a neighborhood of a given periodic motion were obtained by Birkhoff and Lewis (cf. [3] and [ 143) by perturbation-type techniques. Rabinowitz [ 151 was able to prove the existence of subharmonic s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 1985
ISSN: 0022-0396
DOI: 10.1016/0022-0396(85)90131-7