On $P$-soluble rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P-clean rings

Throughout this paper R denotes an associative ring with identity and all modules are unitary. We use the symbol U(R) to denote the group of units of R and Id(R) the set of idempotents of R, Un(R) the set of elements which are the sum of n units of R, UΣ(R) the set of elements each of which is the sum of finitely many units in R, RE(R) (URE(R)) the set of regular (unit regular) elements of R, a...

متن کامل

P-convexly valued rings

This work is a part of my research in the area of model theory. First we study a particular L-theory of rings whose models are called p-convexly valued domains (the first-order language L is the language of rings equipped with a linear divisibility predicate and predicates for the nth powers). It consists of a p-adic counterpart of Becker’s convexly oredered valuation rings. Then we are interes...

متن کامل

on $p$-soluble groups with a generalized $p$-central or powerful sylow $p$-subgroup

let $g$ be a finite $p$-soluble group‎, ‎and $p$ a sylow $p$-subgroup of $g$‎. ‎it is proved‎ ‎that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are‎ ‎contained in the $k$-th term of the upper central series of $p$‎, ‎then the $p$-length of‎ ‎$g$ is at most $2m+1$‎, ‎where $m$ is the greatest integer such that‎ ‎$p^m-p^{m-1}leq k$‎, ‎and the exponent of the image of $p$...

متن کامل

A Generalization of p-Rings

Let R be a ring with Jacobson ideal J and center C. McCoy and Montgomery introduced the concept of a p-ring (p prime) as a ring R of characteristic p such that xp = x for all x in R. Thus, Boolean rings are simply 2-rings (p = 2). It readily follows that a p-ring (p prime) is simply a ring R of prime characteristic p such that R ⊆ N + Ep, where N = {0} and Ep = {x ∈ R : xp = x}. With this as mo...

متن کامل

on p-soluble groups with a generalized p-central or powerful sylow p-subgroup

let $g$ be a finite $p$-soluble group‎, ‎and $p$ a sylow $p$-sub-group of $g$‎. ‎it is proved‎ ‎that if all elements of $p$ of order $p$ (or of order ${}leq 4$ for $p=2$) are‎ ‎contained in the $k$-th term of the upper central series of $p$‎, ‎then the $p$-length of‎ ‎$g$ is at most $2m+1$‎, ‎where $m$ is the greatest integer such that‎ $p^m-p^{m-1}leq k$‎, ‎and the exponent of the image of $p$...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1954

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1954-0064020-8