ON ONE ZALCMAN PROBLEM FOR THE MEAN VALUE OPERATOR
نویسندگان
چکیده
Let \(\mathcal{D}'(\mathbb{R}^n)\) and \(\mathcal{E}'(\mathbb{R}^n)\) be the spaces of distributions compactly supported on \(\mathbb{R}^n\), \(n\geq 2\) respectively, let \(\mathcal{E}'_{\natural}(\mathbb{R}^n)\) space all radial (invariant under rotations \(mathbb{R}^n\)) in \(\mathcal{E}'(\mathbb{R}^n)\), let\(\widetilde{T}\) spherical transform (Fourier–Bessel transform) a distribution \(T\in\mathcal{E}'_{\natural}(\mathbb{R}^n)\), \(\mathcal{Z}_{+}(\widetilde{T})\) set zeros an even entire function \(\widetilde{T}\) lying half-plane \(\mathrm{Re} \, z\geq 0\) not belonging to negative part imaginary axis. \(\sigma_{r}\) surface delta concentrated sphere \(S_r=\{x\in\mathbb{R}^n: |x|=r\}\). The problem L. Zalcman reconstructing \(f\in \mathcal{D}'(\mathbb{R}^n)\) from known convolutions \(f\ast \sigma_{r_1}\) \sigma_{r_2}\) is studied. This correctly posed only condition \(r_1/r_2\notin M_n\), where \(M_n\) possible ratios positive Bessel \(J_{n/2-1}\). paper shows that if then arbitrary can expanded into unconditionally convergent series$$f=\sum\limits_{\lambda\in\mathcal{Z}_{+}(\widetilde{\Omega}_{r_1})}\,\,\, \sum\limits_{\mu\in\mathcal{Z}_+(\widetilde{\Omega}_{r_2})}\frac{4\lambda\mu}{(\lambda^2-\mu^2) \widetilde{\Omega}_{r_1}^{\,\,\,\displaystyle{'}}(\lambda)\widetilde{\Omega}_{r_2}^{\,\,\,\displaystyle{'}}(\mu)}\Big(P_{r_2} (\Delta) \big((f\ast\sigma_{r_2})\ast \Omega_{r_1}^{\lambda}\big)-P_{r_1} \big((f\ast\sigma_{r_1})\ast \Omega_{r_2}^{\mu}\big)\Big)$$in \(\mathcal{D}'(\mathbb{R}^n)\), \(\Delta\) Laplace operator \(P_r\) explicitly given polynomial degree \([(n+5)/4]\), \(\Omega_{r}\) \(\Omega_{r}^{\lambda}\) are constructed ball \(|x|\leq r\). proof uses methods harmonic analysis, as well theory special functions. By similar technique, it obtain inversion formulas for other convolution operators with distributions.
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe spherical mean value operator with centers on a sphere
Let B represent the ball of radius ρ in Rn and S its boundary; consider the map M : C∞ 0 (B) → C∞(S × [0,∞)) where (Mf)(p, r) = 1 ωn−1 ∫ |θ|=1 f(p+ rθ) dθ represents the mean value of f on a sphere of radius r centered at p. We summarize and discuss the results concerning the injectivity of M, the characterization of the range of M, and the inversion of M. There is a close connection between me...
متن کاملDual Mean Value Problem for Complex Polynomials
We consider an extremal problem for polynomials, which is dual to the well-known Smale mean value problem. We give a rough estimate depending only on the degree.
متن کاملMEAN VALUE INTERPOLATION ON SPHERES
In this paper we consider multivariate Lagrange mean-value interpolation problem, where interpolation parameters are integrals over spheres. We have concentric spheres. Indeed, we consider the problem in three variables when it is not correct.
متن کاملMean Value Problems of Flett Type for a Volterra Operator
In this note we give a generalization of a mean value problem which can be viewed as a problem related to Volterra operators. This problem can be seen as a generalization of a result concerning the zeroes of a Volterra operator in the Banach space of continuous functions with null integral on a compact interval.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ural mathematical journal
سال: 2023
ISSN: ['2414-3952']
DOI: https://doi.org/10.15826/umj.2023.1.017