On norm closed ideals in L(lp,lq)

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON NORM CLOSED IDEALS IN L(lp, lq)

Given two Banach spaces X and Y , we write L(X, Y ) for the space of all continuous linear operators from X to Y . A linear subspace J of L(X, Y ) is said to be an ideal if ATB ∈ J whenever A ∈ L(Y ), T ∈ J , and B ∈ L(X). It is known (see, e.g., Caradus:74 [CPY74]) that the only norm closed ideal in L(lp), 1 6 p < ∞ is the ideal of compact operators. The structure of closed ideals in L(lp ⊕ lq...

متن کامل

Normal Derivations in Norm Ideals

We establish the orthogonality of the range and the kernel of a normal derivation with respect to the unitarily invariant norms associated with norm ideals of operators. Related orthogonality results for certain nonnormal derivations are also given.

متن کامل

Integrally Closed Ideals on Log Terminal Surfaces Are Multiplier Ideals

We show that all integrally closed ideals on log terminal surfaces are multiplier ideals by extending an existing proof for smooth surfaces.

متن کامل

Bergman Commutators and Norm Ideals

Let P be the orthogonal projection from L(B, dv) onto the Bergman space La(B, dv) of the unit ball in C . In this paper we characterize the membership of commutators of the form [Mf , P ] in the norm ideal CΦ, where the symmetric gauge function Φ is allowed to be arbitrary.

متن کامل

On Closed Ideals of Analytic Functions

1. The closed ideals in the algebra A of all continuous functions fieie) on the unit circle X = {eie: 0^.B<2ir] which have analytic extensions/(z), \z\ <1 have been determined by Beurling and independently by Rudin [5] as follows: Let Hx denote the weak* closure [A]* of A as a subset of Laidm), where m denotes the normalized Lebesgue measure dd/2ir on the circle. A function qEHTM is called inne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Studia Mathematica

سال: 2007

ISSN: 0039-3223,1730-6337

DOI: 10.4064/sm179-3-3