On nonlinear multipoint conjugate value problem for feedback control systems in the cone
نویسندگان
چکیده
We consider the nonlinear conjugate multi-point boundary value problem with feedback control that finds functions $ u and q satisfying$ \begin{align*} & \mathcal Lu(t) = q(t)F[t,u(t),u'(t),..., u^{(m-1)}(t)],\,\, q(t) \in \Phi[t,u(t)],\,\,\, t\in I, \hfill \\ u^{(j)}(t_i) 0, \,\,\,\,\, 1\leq i \leq l,\,\,\,\, 0\leq j\leq k_i-1, \end{align*} $where L is a linear differential operator of order m $, I [0,1] 0 t_1<...<t_l 1 2\leq l\leq \sum_{i 1}^lk_i $. By using fixed point theory for multivalued operators we prove existence one or two nontrivial solutions problem.
منابع مشابه
Triple Positive Solutions for Multipoint Conjugate Boundary Value Problems
For the nth order nonlinear differential equation y(n)(t) = f(y(t)), t ∈ [0, 1], satisfying the multipoint conjugate boundary conditions, y(ai) = 0, 1 ≤ i ≤ k, 0 ≤ j ≤ ni − 1, 0 = a1 < a2 < · · · < ak = 1, and ∑k i=1 ni = n, where f : R→ [0,∞) is continuous, growth condtions are imposed on f which yield the existence of at least three solutions that belong to a cone.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولDirect feedback control design for nonlinear systems
We propose an approach for the direct design from data of controllers finalized at solving tracking problems for nonlinear systems. This approach, called Direct FeedbacK (DFK) design, overcomes relevant problems typical of the standard design methods, such as modeling errors, nontrivial parameter identification, non-convex optimization, and difficulty in nonlinear control design. Considering a ...
متن کاملFeedback Control Methodologies for Nonlinear Systems 1
A number of computational methods have been proposed in the literature to design and synthesize feedback controls when the plant is modeled by nonlinear dynamics. It is not immediately clear, however, which is the best method for a given problem; this may depend on the nature of the nonlinearities, the size of the system, whether the amount of control used or time needed for the method is a con...
متن کاملNonlinear Output Feedback H_inf Control for Polynomial Nonlinear Systems
In this paper, we propose a computational scheme of solving the output feedback H∞ control problem for a class of nonlinear systems with polynomial vector field. The output feedback control design problem will be decomposed into a state feedback and an output estimation problems. Resorting to higher order Lyapunov functions, two Hamilton-JacobianIsaacs (HJI) inequalities are first formulated as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete and Continuous Dynamical Systems - Series S
سال: 2023
ISSN: ['1937-1632', '1937-1179']
DOI: https://doi.org/10.3934/dcdss.2023126