On non-pure forms on almost complex manifolds
نویسندگان
چکیده
منابع مشابه
Potential Theory on Almost Complex Manifolds
Pseudo-holomorphic curves on almost complex manifolds have been much more intensely studied than their “dual” objects, the plurisubharmonic functions. These functions are standardly defined by requiring that the restriction to each pseudo-holomorphic curve be subharmonic. In this paper subharmonic functions are defined by applying the viscosity approach to a version of the complex hessian which...
متن کاملSymplectic Forms and Cohomology Decomposition of Almost Complex 4-manifolds
In this paper we continue to study differential forms on an almost complex 4–manifold (M,J) following [18]. We are particularly interested in the subgroups H J (M) and H − J (M) of the degree 2 real De Rham cohomology group H2(M,R). These are the sets of cohomology classes which can be represented by J-invariant, respectively, J-anti-invariant real 2−forms. The goal pursued by defining these su...
متن کاملOn Some Cohomological Properties of Almost Complex Manifolds
We study a special type of almost complex structures, called pure and full and introduced by T.J. Li and W. Zhang in [16], in relation to symplectic structures and Hard Lefschetz condition. We provide sufficient conditions to the existence of the above type of almost complex structures on compact quotients of Lie groups by discrete subgroups. We obtain families of pure and full almost complex s...
متن کاملHolomorphic almost periodic functions on coverings of complex manifolds
In this paper we discuss some results of the theory of holomorphic almost periodic functions on coverings of complex manifolds, recently developed by the authors. The methods of the proofs are mostly sheaf-theoretic which allows us to obtain new results even in the classical setting of H. Bohr’s holomorphic almost periodic functions on tube
متن کاملStably and Almost Complex Structures on Bounded Flag Manifolds
We study the enumeration problem of stably complex structures on bounded flag manifolds arising from omniorientations, and determine those induced by almost complex structures. We also enumerate the stably complex structures on these manifolds which bound, therefore representing zero in the complex cobordism ring Ω∗ .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2014
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2014-11578-4