On non-commutative regular local rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Properties of Non-commutative Regular Graded Rings

Introduction. Let A be a noetherian ring. When A is commutative (of finite Krull dimension), A is said to be Gorenstein if its injective dimension is finite. If A has finite global dimension, one says that A is regular. If A is arbitrary, these hypotheses are not sufficient to obtain similar results to those of the commutative case. To remedy this problem, M. Auslander has introduced a suppleme...

متن کامل

On quasi-zero divisor graphs of non-commutative rings

Let $R$ be an associative ring with identity. A ring $R$ is called reversible if $ab=0$, then $ba=0$ for $a,bin R$. The quasi-zero-divisor graph of $R$, denoted by $Gamma^*(R)$ is an undirected graph with all nonzero zero-divisors of $R$ as vertex set and two distinct vertices $x$ and $y$ are adjacent if and only if there exists $0neq rin R setminus (mathrm{ann}(x) cup mathrm{ann}(y))$ such tha...

متن کامل

Non-commutative reduction rings

Reduction relations are means to express congruences on rings. In the special case of congruences induced by ideals in commutative polynomial rings, the powerful tool of Gröbner bases can be characterized by properties of reduction relations associated with ideal bases. Hence, reduction rings can be seen as rings with reduction relations associated to subsets of the ring such that every finitel...

متن کامل

ON COMMUTATIVE GELFAND RINGS

A ring is called a Gelfand ring (pm ring ) if each prime ideal is contained in a unique maximal ideal. For a Gelfand ring R with Jacobson radical zero, we show that the following are equivalent: (1) R is Artinian; (2) R is Noetherian; (3) R has a finite Goldie dimension; (4) Every maximal ideal is generated by an idempotent; (5) Max (R) is finite. We also give the following resu1ts:an ideal...

متن کامل

Commutative Regular Rings without Prime Model Extensions

It is known that the theory K of commutative regular rings with identity has a model completion K . We show that there exists a countable model of K which has no prime extension to a model of K'. If K and K ate theories in a first order language L, then K is said to be a model completion of K if K extends K, every model of K can be embedded in a model of K , and for any model A of K and models ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 1976

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089500002792