On Neutrosophic Extended Triplet LA-hypergroups and Strong Pure LA-semihypergroups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on semihypergroups and hypergroups

in this thesis, first the notion of weak mutual associativity (w.m.a.) and the necessary and sufficient condition for a $(l,gamma)$-associated hypersemigroup $(h, ast)$ derived from some family of $lesssim$-preordered semigroups to be a hypergroup, are given. second, by proving the fact that the concrete categories, semihypergroups and hypergroups have not free objects we will introduce t...

15 صفحه اول

Neutrosophic Bi-LA-Semigroup and Neutrosophic N-LA- Semigroup

In this paper we define neutrosophic bi-LAsemigroup and neutrosophic N-LA-semigroup. Infact this paper is an extension of our previous paper neutrosophic left almost semigroup shortly neutrosophic LAsemigroup. We also extend the neutrosophic ideal to neutrosophic biideal and neutrosophic N-ideal. We also find some new type of neutrosophic ideal which is related to the strong or pure part of neu...

متن کامل

Introduction to Neutrosophic Hypergroups

The objective of this paper is to introduce the concept of neutrosophic hypergroup and present some of its elementary properties.

متن کامل

?-Independent and Dissociate Sets on Compact Commutative Strong Hypergroups

In this paper we define ?-independent (a weak-version of independence), Kronecker and dissociate sets on hypergroups and study their properties and relationships among them and some other thin sets such as independent and Sidon sets. These sets have the lacunarity or thinness property and are very useful indeed. For example Varopoulos used the Kronecker sets to prove the Malliavin theorem. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2020

ISSN: 2073-8994

DOI: 10.3390/sym12010163