On multicolor Ramsey numbers for complete bipartite graphs
نویسندگان
چکیده
منابع مشابه
Multicolor Ramsey Numbers For Complete Bipartite Versus Complete Graphs
Let H1, . . . ,Hk be graphs. The multicolor Ramsey number r(H1, . . . ,Hk) is the minimum integer r such that in every edge-coloring of Kr by k colors, there is a monochromatic copy of Hi in color i for some 1 ≤ i ≤ k. In this paper, we investigate the multicolor Ramsey number r(K2,t, . . . ,K2,t,Km), determining the asymptotic behavior up to a polylogarithmic factor for almost all ranges of t ...
متن کاملSome Ramsey numbers for complete bipartite graphs
Upper bounds are determined for the Ramsey number ](m,n), 2 :; m n. These bounds are attained for infinitely many n in case of m 3 and are fairly close to the exact value for every m if n is sufficiently large.
متن کاملRamsey Numbers of Some Bipartite Graphs Versus Complete Graphs
The Ramsey number r(H, Kn) is the smallest positive integer N such that every graph of order N contains either a copy of H or an independent set of size n. The Turán number ex(m, H) is the maximum number of edges in a graph of order m not containing a copy of H . We prove the following two results: (1) Let H be a graph obtained from a tree F of order t by adding a new vertex w and joining w to ...
متن کاملZarankiewicz Numbers and Bipartite Ramsey Numbers
The Zarankiewicz number z(b; s) is the maximum size of a subgraph of Kb,b which does not contain Ks,s as a subgraph. The two-color bipartite Ramsey number b(s, t) is the smallest integer b such that any coloring of the edges of Kb,b with two colors contains a Ks,s in the rst color or a Kt,t in the second color.In this work, we design and exploit a computational method for bounding and computing...
متن کاملOn Bipartite Graphs with Linear Ramsey Numbers
We provide an elementary proof of the fact that the ramsey number of every bipartite graph H with maximum degree at most ∆ is less than 8(8∆)|V (H)|. This improves an old upper bound on the ramsey number of the n-cube due to Beck, and brings us closer toward the bound conjectured by Burr and Erdős. Applying the probabilistic method we also show that for all ∆≥1 and n≥∆+1 there exists a bipartit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 1975
ISSN: 0095-8956
DOI: 10.1016/0095-8956(75)90043-x