On monotone Ćirić quasi-contraction mappings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Monotone Ćirić Quasi–contraction Mappings

We prove the existence of fixed points of monotone quasi-contraction mappings in metric and modular metric spaces. This is the extension of Ran and Reurings fixed point theorem for monotone contraction mappings in partially ordered metric spaces to the case of quasicontraction mappings introduced by Ćirić. The proofs are based on Lemmas ?? and ??, which contain two crucial inequalities essentia...

متن کامل

Quasi-contraction Mappings in Modular Spaces

As a generalization to Banach contraction principle, Ćirić introduced the concept of quasi-contraction mappings. In this paper, we investigate these kind of mappings in modular function spaces without the ∆2-condition. In particular, we prove the existence of fixed points and discuss their uniqueness. 2000 Subject Classification: Primary 46E30; Secondary 47H09, 47H10.

متن کامل

An optimization problem involving proximal quasi-contraction mappings

*Correspondence: [email protected] Department of Mathematics, King Saud University, Riyadh, Saudi Arabia Abstract Consider a non-self-mapping T : A→ B, where (A,B) is a pair of nonempty subsets of a metric space (X ,d). In this paper, we study the existence and uniqueness of solutions to the global optimization problem minx∈A d(x, Tx), where T belongs to the class of proximal quasi-contraction ...

متن کامل

EXTENSION OF FUZZY CONTRACTION MAPPINGS

In a fuzzy metric space (X;M; *), where * is a continuous t-norm,a locally fuzzy contraction mapping is de ned. It is proved that any locally fuzzy contraction mapping is a global fuzzy contractive. Also, if f satis es the locally fuzzy contractivity condition then it satis es the global fuzzy contrac-tivity condition.    

متن کامل

On the Monotone Mappings in CAT(0) Spaces

In this paper, we first introduce a monotone mapping and its resolvent in general metric spaces.Then, we give two new iterative methods  by combining the resolvent method with Halpern's iterative method and viscosity approximation method for  finding a fixed point of monotone mappings and a solution of variational inequalities. We prove convergence theorems of the proposed iterations  in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2016

ISSN: 1846-579X

DOI: 10.7153/jmi-10-40