On Monochromatic Pairs of Nondecreasing Diameters

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On four color monochromatic sets with nondecreasing diameter

Let m and r be positive integers. Define f(m, r) to be the least positive integer N such that for every coloring of the integers 1, . . . , N with r colors there exist monochromatic subsets B1 and B2 (not necessarily of the same color), each having m elements, such that (a) max(B1)−min(B1) ≤ max(B2)−min(B2), and (b) max(B1) < min(B2). We improve previous upper bounds to determine that f(m, 4) =...

متن کامل

Monochromatic and zero-sum sets of nondecreasing diameter

For positive integers m and r define f (m, r) to be the minimum integer n such that for every coloring of {1,2 . . . . . n} with r colors, there exist two monochromatic subsets B 1, B2~{1, 2 . . . . . n} (but not necessarily of the same color) which satisfy: (i)IBll=lB21=m; (ii) The largest number in B 1 is smaller than the smallest number in B2; (iii) The diameter of the convex hull spanned by...

متن کامل

Monochromatic and Zero-Sum Sets of Nondecreasing Modified Diameter

Let m be a positive integer whose smallest prime divisor is denoted by p, and let Zm denote the cyclic group of residues modulo m. For a set B = {x1, x2, . . . , xm} of m integers satisfying x1 < x2 < · · · < xm, and an integer j satisfying 2 ≤ j ≤ m, define gj(B) = xj − x1. Furthermore, define fj(m, 2) (define fj(m, Zm)) to be the least integer N such that for every coloring ∆ : {1, . . . ,N} ...

متن کامل

On Monochromatic Sets of Integers Whose Diameters Form a Monotone Sequence

Let g(m, t) denote the minimum integer s such that for every 2-coloring of the integers in the interval [1, s], there exist t subsets A1, A2, . . . , At, of size m satisfying: (i) Ai for every i = 1, 2, . . . , t is monochromatic (not necessarily the same color) (ii) max(Ai) ≤ min(Ai+1) for every i = 1, 2, . . . , t − 1, and (iii) either diam(Ai) ≤ diam(Ai+1) for every i = 1, 2, . . . , t − 1 o...

متن کامل

On the Number of Monochromatic Close Pairs of Beads in a

| We consider the following problem: Let r be a n-bead rosary with m white beads and n ? m black beads. Let t be an integer, t n. Denote by MC t (r) the number of pairs, of monochromatic beads which are within distance t apart, in the rosary r. What is the minimum value of MC t (), when the minimum is taken over all n-bead rosaries which consists of m white beads and n ? m black beads? We prove...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Electronic Journal of Combinatorics

سال: 2019

ISSN: 1077-8926

DOI: 10.37236/8003