On modified Einstein tensors and two smooth invariants of compact manifolds

نویسندگان

چکیده

Let ( M , g stretchy="false">) (M,g) be a Riemannian alttext="n"> n encoding="application/x-tex">n -manifold, we denote by alttext="upper R i c"> R i c encoding="application/x-tex">Ric and S c l"> S a l encoding="application/x-tex">Scal the Ricci scalar curvatures of alttext="g"> encoding="application/x-tex">g . For each real number alttext="k greater-than n"> k &gt; encoding="application/x-tex">k&gt;n , modified Einstein tensors denoted alttext="normal E normal n Subscript k"> E mathvariant="normal">i mathvariant="normal">n encoding="application/x-tex">\mathrm {Ein}_k is defined to k Baseline colon-equal l minus ≔ − {Ein}_k ≔Scal\, -kRic Note that usual tensor coincides with one half 2"> 2 {Ein}_2 0 equals period g"> 0 = . {Ein}_0=Scal.g It turns out all these new tensors, for alttext="0 encoding="application/x-tex">0&gt;k&gt;n are still gradients total curvature functional but respect integral products. The positivity some positive alttext="k"> encoding="application/x-tex">k implies {Ein}_l less-than-or-equal-to ≤<!-- ≤ encoding="application/x-tex">0\leq l\leq k so define smooth invariant alttext="bold bold left-parenthesis mathvariant="bold">E mathvariant="bold">i mathvariant="bold">n encoding="application/x-tex">\mathbf {Ein}(M) M"> encoding="application/x-tex">M supremum k’s renders positive. By definition right-parenthesis element-of left-bracket right-bracket"> ∈<!-- ∈ stretchy="false">[ stretchy="false">] {Ein}(M)\in [0,n] it zero if only has no metrics maximal equal possesses an metric curvature. In sense, measures how far away from admitting this paper, prove greater-than-or-equal-to ≥<!-- ≥ {Ein}(M)\geq 2</mml:annotation> any closed simply connected manifold dimension alttext="greater-than-or-equal-to 5"> 5 encoding="application/x-tex">\geq 5 Furthermore, compact alttext="2"> encoding="application/x-tex">2 -connected 6"> 6 6 curvature, show 3"> 3 3 We demonstrate as well {Ein} (M) increases after doing surgery on or assuming higher connectivity. condition {Ein}(M)\leq n-2 does not imply restriction first fundamental group similar properties analogous namely e mathvariant="bold">e {ein}(M) paper contains several open questions.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Operator-valued tensors on manifolds

‎In this paper we try to extend geometric concepts in the context of operator valued tensors‎. ‎To this end‎, ‎we aim to replace the field of scalars $ mathbb{R} $ by self-adjoint elements of a commutative $ C^star $-algebra‎, ‎and reach an appropriate generalization of geometrical concepts on manifolds‎. ‎First‎, ‎we put forward the concept of operator-valued tensors and extend semi-Riemannian...

متن کامل

Construction of conformally compact Einstein manifolds

We produce some explicit examples of conformally compact Einstein manifolds, whose conformal compactifications are foliated by Riemannian products of a closed Einstein manifold with the total space of a principal circle bundle over products of Kähler-Einstein manifolds. We compute the associated conformal invariants, i.e., the renormalized volume in even dimensions and the conformal anomaly in ...

متن کامل

Ricci Curvature Bounds and Einstein Metrics on Compact Manifolds

dL(Mo,M1) = inf[llogdil/l + Ilogdil/-II], f where I: Mo -+ MI is a homeomorphism and dil I is the dilatation of I given by dill = SUPXt#2 dist(f(x l ), l(x2))/ dist(x1 ,x2). If Mo and MI are not homeomorphic, define dL(Mo,M1) = +00. Gromov [20] proves the remarkable result that the space of compact Riemannian manifolds L(A,t5 ,D) of sectional curvature IKI :::; A, injectivity radius i M 2: t5 >...

متن کامل

Fredholm Operators and Einstein Metrics on Conformally Compact Manifolds

The main purpose of this monograph is to give an elementary and self-contained account of the existence of asymptotically hyperbolic Einstein metrics with prescribed conformal infinities sufficiently close to that of a given asymptotically hyperbolic Einstein metric with nonpositive curvature. The proof is based on an elementary derivation of sharp Fredholm theorems for self-adjoint geometric l...

متن کامل

Compact Einstein-Weyl four-dimensional manifolds

We look for complete four dimensional Einstein-Weyl spaces equipped with a Bianchi metric. Using the explicit 4-parameters expression of the distance obtained in a previous work for non-conformally-Einstein Einstein-Weyl structures, we show that four 1-parameter families of compact metrics exist : they are all of Bianchi IX type and conformally Kähler ; moreover, in agreement with general resul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2022

ISSN: ['2330-0000']

DOI: https://doi.org/10.1090/tran/8791