On mixed finite element techniques for elliptic problems
نویسندگان
چکیده
منابع مشابه
Mixed Finite Element Methods for Elliptic Problems*
This paper treats the basic ideas of mixed finite element methods at an introductory level. Although the viewpoint presented is that of a mathematician, the paper is aimed at practitioners and the mathematical prerequisites are kept to a minimum. A classification of variational principles and of the corresponding weak formulations and Galerkin methods—displacement, equilibrium, and mixed—is giv...
متن کاملAdaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems
We consider mixed nite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangula-tions. By a well known postprocessing technique the discrete problem is equivalent to a modiied nonconforming discretization which is solved by preconditioned cg-iterations using a multilevel B...
متن کاملPreconditioning Mixed Finite Element Saddle-point Elliptic Problems
We consider saddle-point problems that typically arise from the mixed finite element discretization of second order elliptic problems. By proper equivalent algebraic operations the considered saddle-point problem is transformed to another saddle-point problem. The resulting problem can then be efficiently preconditioned by a block-diagonal matrix or by a factored block-matrix (the blocks corres...
متن کاملAdaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems Technische Universit at M Unchen Cataloging Data : Adaptive Multilevel Techniques for Mixed Finite Element Discretizations of Elliptic Boundary Value Problems
We consider mixed nite element discretizations of linear second order elliptic boundary value problems with respect to an adaptively generated hierarchy of possibly highly nonuniform simplicial triangula-tions. By a well known postprocessing technique the discrete problem is equivalent to a modiied nonconforming discretization which is solved by preconditioned cg-iterations using a multilevel B...
متن کاملOn mixed finite element methods for first order elliptic systems
A physically based duality theory for first order elliptic systems is shorn to be of central importance in connection with the Galerkin finite element solution of these systems. Using this theory in conjunction with a certain hypothesis concerning approximation spaces, optimal error estimates for Galerkin type approximations are demonstrated. An example of a grid which satisfies the hypothesis ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics and Mathematical Sciences
سال: 1983
ISSN: 0161-1712,1687-0425
DOI: 10.1155/s0161171283000642