On Logarithmic Tables

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On logarithmic derivatives

© Bulletin de la S. M. F., 1968, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http://smf. emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...

متن کامل

Benford's law: A "sleeping beauty" sleeping in the dirty pages of logarithmic tables

Tariq Ahmad MIR and Marcel AUSLOOS Accepted for publication in the Journal of the Association for Information Science and Technology Nuclear Research Laboratory, Astrophysical Sciences Division, Bhabha Atomic Research Centre, Srinagar-190 006, Jammu and Kashmir, India. a e-mail address: [email protected] 2 GRAPES∗ rue de la Belle Jardinière 483, B-4031, Angleur, Liège, Belgium b e-mail addre...

متن کامل

On the logarithmic comparison theorem for integrable logarithmic connections

LetX be a complex analytic manifold, D ⊂ X a Koszul free divisor with jacobian ideal of linear type (e.g. a locally quasi-homogeneous free divisor), j : U = X −D →֒ X the corresponding open inclusion, E an integrable logarithmic connection with respect to D and L the local system of the horizontal sections of E on U . In this paper we prove that the canonical morphisms ΩX(logD)(E(kD)) −→ Rj∗L, j...

متن کامل

A Note on Exponential-logarithmic and Logarithmic-exponential Series

We explain how the field of logarithmic-exponential series constructed in [DMM1] and [DMM2] embeds as an exponential field in any field of exponential-logarithmic series (constructed in [KK1], [K] and [KS]). On the other hand, we explain why no field of exponential-logarithmic series embeds in the field of logarithmic-exponential series. This clarifies why the two constructions are intrinsicall...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Monthly Notices of the Royal Astronomical Society

سال: 1873

ISSN: 0035-8711,1365-2966

DOI: 10.1093/mnras/33.7.440