On Locally-Balanced 2-Partitions of Complete Multipartite Graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interval colorings of complete balanced multipartite graphs

A graph G is called a complete k-partite (k ≥ 2) graph if its vertices can be partitioned into k independent sets V1, . . . , Vk such that each vertex in Vi is adjacent to all the other vertices in Vj for 1 ≤ i < j ≤ k. A complete k-partite graph G is a complete balanced kpartite graph if |V1| = |V2| = · · · = |Vk|. An edge-coloring of a graph G with colors 1, . . . , t is an interval t-colorin...

متن کامل

Crossing numbers of complete tripartite and balanced complete multipartite graphs

The crossing number cr(G) of a graph G is the minimum number of crossings in a nondegenerate planar drawing of G. The rectilinear crossing number cr(G) of G is the minimum number of crossings in a rectilinear nondegenerate planar drawing (with edges as straight line segments) of G. Zarankiewicz proved in 1952 that cr(Kn1,n2) ≤ Z(n1, n2) := ⌊ n1 2 ⌋ ⌊ n1−1 2 ⌋ ⌊ n2 2 ⌋ ⌊ n2−1 2 ⌋ . We define an ...

متن کامل

Hamilton decompositions of balanced complete multipartite graphs with primitive leaves

A graph G is said to be primitive if it contains no proper factors. In this paper, by using the amalgamation technique, we find sufficient conditions for the existence of a d-regular graph G on n vertices which: 1. has a Hamilton decomposition, and 2. has a complement in K p m that is primitive. These general results are then used to consider the bounds onmwhen p and d are fixed. The case p = 6...

متن کامل

Bipartite 2-Factorizations of Complete Multipartite Graphs

It is shown that if K is any regular complete multipartite graph of even degree, and F is any bipartite 2-factor of K, then there exists a factorisation of K into F ; except that there is no factorisation of K6,6 into F when F is the union of two disjoint 6-cycles.

متن کامل

On Crossing Numbers of Complete Tripartite and Balanced Complete Multipartite Graphs

The crossing number cr(G) of a graph G is the minimum number of crossings in a nondegenerate planar drawing of G. The rectilinear crossing number cr(G) of G is the minimum number of crossings in a rectilinear nondegenerate planar drawing (with edges as straight line segments) of G. Zarankiewicz proved in 1952 that cr(Kn1,n2) ≤ Z(n1, n2) := ⌊ n1 2 ⌋ ⌊ n1−1 2 ⌋ ⌊ n2 2 ⌋ ⌊ n2−1 2 ⌋ . We define an ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Problems of Computer Science

سال: 2018

ISSN: 2579-2784

DOI: 10.51408/1963-0001