منابع مشابه
Boring Split Links
Boring is an operation which converts a knot or two-component link in a 3–manifold into another knot or two-component link. It generalizes rational tangle replacement and can be described as a type of 2–handle attachment. Sutured manifold theory is used to study the existence of essential spheres and planar surfaces in the exteriors of knots and links obtained by boring a split link. It is show...
متن کاملBoring Split Links and Unknots
Boring is an operation which converts a knot or two-component link in a 3–manifold into another knot or two-component link. It generalizes rational tangle replacement and can be described as a type of 2–handle attachment. Sutured manifold theory is used to find lower bounds for the genus of knots obtained by boring split links and unknots. Bounds on the euler characteristic of essential planar ...
متن کاملNot All Links Are Concordant to Boundary Links
A link is a smooth, oriented submanifold L = {Kx, . . . , Km} of S which is the ordered disjoint union of m manifolds each piecewise-linearly homeomorphic to the «-sphere (if m = 1, L is called a knot). Knots and links play an essential role in the classification of manifolds and, in this regard, perhaps the most important equivalence relation on links is that of link concordance. LQ and L{ are...
متن کاملNumerical modeling of links behavior in eccentric bracings with dual vertical links
Configuration and geometry of bracing systems affect the seismic performance of structures significantly. Recently, the current authors have introduced a new configuration for eccentric bracing of structural frames that may be assumed as the combination of inverted Y-type and rotated K-type EBFs. The resulted braced frame is called EBF-DVL, consisting of two vertical links attached together by ...
متن کاملLinks not concordant to the Hopf link
We give new Casson–Gordon style obstructions for a two–component link to be topologically concordant to the Hopf link.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Topology
سال: 1980
ISSN: 0040-9383
DOI: 10.1016/0040-9383(80)90017-8