On Lie Symmetry Analysis of Certain Coupled Fractional Ordinary Differential Equations
نویسندگان
چکیده
منابع مشابه
Application of the Lie Symmetry Analysis for second-order fractional differential equations
Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issue among mathematicians and engineers, specifically in recent years. The purpose of this paper Lie Symmetry method is developed to solve second-order fractional differential equations, based on conformable fractional derivative. Some numerical examples are presented to il...
متن کاملLie symmetry analysis for Kawahara-KdV equations
We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.
متن کاملlie symmetry analysis for kawahara-kdv equations
we introduce a new solution for kawahara-kdv equations. the lie group analysis is used to carry out the integration of this equations. the similarity reductions and exact solutions are obtained based on the optimal system method.
متن کاملNumerical Schemes for Fractional Ordinary Differential Equations
Fractional calculus, which has almost the same history as classic calculus, did not attract enough attention for a long time. However, in recent decades, fractional calculus and fractional differential equations become more and more popular because of its powerful potential applications. A large number of new differential equations (models) that involve fractional calculus are developed. These ...
متن کاملSymmetry and the Singular Point Analysis for Ordinary Differential Equations
We show a direct relation between the singular point analysis and the symmetry for ordinary differential equations. It is proved that a system with a meromorphic solution allows Laurent solutions depending on m arbitrary parameters if it has m independent symmetries, regardless of the existence of single-valued first integrals. Applying the result to Hamiltonian systems, we show a pairing prope...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Mathematical Physics
سال: 2021
ISSN: ['1776-0852', '1402-9251']
DOI: https://doi.org/10.2991/jnmp.k.210315.001