On Lie bialgebroid crossed modules
نویسندگان
چکیده
We study Lie bialgebroid crossed modules which are pairs of algebroid in duality that canonically give rise to bialgebroids. A one-one correspondence between such and co-quadratic Manin triples [Formula: see text] is established, where a pair transverse Dirac structures text].
منابع مشابه
On Lie algebra crossed modules
The goal of this article is to construct a crossed module representing the cocycle 〈[, ], 〉 generating H(g; C) for a simple complex Lie algebra g.
متن کاملCourant algebroid and Lie bialgebroid contractions
Contractions of Leibniz algebras and Courant algebroids by means of (1,1)-tensors are introduced and studied. An appropriate version of Nijenhuis tensors leads to natural deformations of Dirac structures and Lie bialgebroids. One recovers presymplectic-Nijenhuis structures, PoissonNijenhuis structures, and triangular Lie bialgebroids as particular examples. MSC 2000: Primary 17B99; Secondary 17...
متن کاملOn Categorical Crossed Modules
The well-known notion of crossed module of groups is raised in this paper to the categorical level supported by the theory of categorical groups. We construct the cokernel of a categorical crossed module and we establish the universal property of this categorical group. We also prove a suitable 2-dimensional version of the kernelcokernel lemma for a diagram of categorical crossed modules. We th...
متن کاملThe category of generalized crossed modules
In the definition of a crossed module $(T,G,rho)$, the actions of the group $T$ and $G$ on themselves are given by conjugation. In this paper, we consider these actions to be arbitrary and thus generalize the concept of ordinary crossed module. Therefore, we get the category ${bf GCM}$, of all generalized crossed modules and generalized crossed module morphisms between them, and investigate som...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Mathematics
سال: 2021
ISSN: ['1793-6519', '0129-167X']
DOI: https://doi.org/10.1142/s0129167x2150021x