On Kronecker limit formula for real quadratic fields
نویسندگان
چکیده
منابع مشابه
On Kronecker limit formulas for real quadratic fields
Let ζ(s,C) be the partial zeta function attached to a ray class C of a real quadratic field. We study this zeta function at s = 1 and s = 0, combining some ideas and methods due to Zagier and Shintani. The main results are (1) a generalization of Zagier’s formula for the constant term of the Laurent expansion at s = 1, (2) some expressions for the value and the first derivative at s = 0, relate...
متن کاملA Kronecker Limit Formula for Totally Real Fields and Arithmetic Applications
We establish a Kronecker limit formula for the zeta function ζF (s,A) of a wide ideal class A of a totally real number field F of degree n. This formula relates the constant term in the Laurent expansion of ζF (s,A) at s = 1 to a toric integral of a SLn(Z)-invariant function logG(Z) along a Heegner cycle in the symmetric space of GLn(R). We give several applications of this formula to algebraic...
متن کاملOn a Class Number Formula for Real Quadratic Number Fields
For an even Dirichlet character , we obtain a formula for L(1;) in terms of a sum of Dirichlet L-series evaluated at s = 2 and s = 3 and a rapidly convergent numerical series involving the central binomial coeecients. We then derive a class number formula for real quadratic number elds by taking L(s;) to be the quadratic L-series associated with these elds.
متن کاملReal Quadratic Number Fields
a4 + 1 a5 + .. . will see that a less wasteful notation, say [ a0 , a1 , a2 , . . . ] , is needed to represent it. Anyone attempting to compute the truncations [ a0 , a1 , . . . , ah ] = ph/qh will be delighted to notice that the definition [ a0 , a1 , . . . , ah ] = a0 + 1/[ a1 , . . . , ah ] immediately implies by induction on h that there is a correspondence ( a0 1 1 0 ) ( a1 1 1 0 ) · · · (...
متن کاملA Conjectural Product Formula for Brumer–Stark Units over Real Quadratic Fields
Following methods of Hayes, we state a conjectural product formula for ratios of Brumer–Stark units over real quadratic fields.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences
سال: 1976
ISSN: 0386-2194
DOI: 10.3792/pja/1195518272