On Jordan Higher Bi­Derivations On Prime Gamma Rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Jordan Isomorphisms of 2-torsion Free Prime Gamma Rings

This paper defines an isomorphism, an anti-isomorphism and a Jordan isomorphism in a gamma ring and develops some important results relating to these concepts. Using these results we prove Herstein’s theorem of classical rings in case of prime gamma rings by showing that every Jordan isomorphism of a 2-torsion free prime gamma ring is either an isomorphism or an anti-isomorphism. AMS Mathematic...

متن کامل

*-σ-biderivations on *-rings

Bresar in 1993 proved that each biderivation on a noncommutative prime ring is a multiple of a commutatot. A result of it is a characterization of commuting additive mappings, because each commuting additive map give rise to a biderivation. Then in 1995, he investigated biderivations, generalized biderivations and sigma-biderivations on a prime ring and generalized the results of derivations fo...

متن کامل

Two Torsion Free Prime Gamma Rings With Jordan Left Derivations

Let M be a 2-torsion free prime Γ-ring and X a nonzero faithful and prime ΓM -module. Then the existence of a nonzero Jordan left derivation d : M → X satisfying some appropriate conditions implies M is commutative. M is also commutative in the case that d : M → M is a derivation along with some suitable assumptions. AMS (MOS) Subject Classification Codes: 03E72, 54A40, 54B15

متن کامل

Centralizing automorphisms and Jordan left derivations on σ-prime rings

Let R be a 2-torsion free σ-prime ring. It is shown here that if U 6⊂ Z(R) is a σ-Lie ideal of R and a, b in R such that aUb = σ(a)Ub = 0, then either a = 0 or b = 0. This result is then applied to study the relationship between the structure of R and certain automorphisms on R. To end this paper, we describe additive maps d : R −→ R such that d(u) = 2ud(u) where u ∈ U, a nonzero σ-square close...

متن کامل

Generalized Jordan Triple Higher ∗−Derivations on Semiprime Rings

Let R be an associative ring not necessarily with identity element. For any x, y ∈ R. Recall that R is prime if xRy = 0 implies x = 0 or y = 0, and is semiprime if xRx = 0 implies x = 0. Given an integer n ≥ 2, R is said to be n−torsion free if for x ∈ R, nx = 0 implies x = 0.An additive mapping d : R → R is called a derivation if d(xy) = d(x)y + yd(x) holds for all x, y ∈ R, and it is called a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IOSR Journal of Mathematics

سال: 2016

ISSN: 2319-765X,2278-5728

DOI: 10.9790/5728-1204016668