On isospectral deformations on nilmanifolds

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equivariant Isospectrality and Isospectral Deformations of Metrics on Spherical Orbifolds

Most known examples of isospectral manifolds can be constructed through variations of Sunada’s method or Gordon’s torus method. In this paper we explore these two techniques in the framework of equivariant isospectrality. We begin by establishing an equivariant version of Sunada’s technique and then we observe that many examples arising from the torus method are equivariantly isospectral. Using...

متن کامل

Dolbeault Cohomology and Deformations of Nilmanifolds

In these notes I review some classes of invariant complex structures on nilmanifolds for which the Dolbeault cohomology can be computed by means of invariant forms, in the spirit of Nomizu’s theorem for de Rham cohomology. Moreover, deformations of complex structures are discussed. Small deformations remain in some cases invariant, so that, by Kodaira-Spencer theory, Dolbeault cohomology can be...

متن کامل

Twists and Spectral Triples for Isospectral Deformations

We construct explicitly the symmetries of the isospectral deformations as twists of Lie algebras and generalize the deformation for an arbitrary twist.

متن کامل

Isospectral Deformations of the Dirac Operator

We give more details about an integrable system [26] in which the Dirac operator D = d + d∗ on a graph G or manifold M is deformed using a Hamiltonian system D′ = [B, h(D)] with B = d − d∗ + βib. The deformed operator D(t) = d(t) + b(t) + d(t)∗ defines a new exterior derivative d(t) and a new Dirac operator C(t) = d(t) + d(t)∗ and Laplacian M(t) = C(t)2 and so a new distance on G or a new metri...

متن کامل

Isospectral Deformations of Random Jacobi Operators

We show the integrability of infinite dimensional Hamiltonian systems obtained by making isospectral deformations of random Jacobi operators over an abstract dynamical system. The time 1 map of these so called random Toda flows can be expressed by a QR decomposition.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Séminaire de théorie spectrale et géométrie

سال: 1991

ISSN: 2118-9242

DOI: 10.5802/tsg.124