On interval decomposability of 2D persistence modules
نویسندگان
چکیده
In the persistent homology of filtrations, indecomposable decompositions provide persistence diagrams. However, in almost all cases multidimensional persistence, classification modules is known to be a wild problem. One direction consider subclass interval-decomposable modules, which are direct sums interval representations. We introduce definition pre-interval representations, more natural algebraic definition, and study relationships between pre-interval, interval, thin show that over “equioriented” commutative 2D grid, these concepts equivalent. Moreover, we criterion for determining whether or not an nD module interval/pre-interval/thin-decomposable without having explicitly compute decompositions. For algorithm interval-decomposability, together with worst-case complexity analysis uses total number intervals equioriented grid. also propose several heuristics speed up computation.
منابع مشابه
Stability of higher-dimensional interval decomposable persistence modules
The algebraic stability theorem for pointwise finite dimensional (p.f.d.) R-persistence modules is a central result in the theory of stability for persistence modules. We present a stability theorem for n-dimensional rectangle decomposable p.f.d. persistence modules up to a constant (2n− 1) that is a generalization of the algebraic stability theorem. We give an example to show that the bound ca...
متن کاملdedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولPersistence modules: Algebra and algorithms
Abstract. Persistent homology was shown by Zomorodian and Carlsson [35] to be homology of graded chain complexes with coefficients in the graded ring k[t]. As such, the behavior of persistence modules — graded modules over k[t] — is an important part in the analysis and computation of persistent homology. In this paper we present a number of facts about persistence modules; ranging from the wel...
متن کاملMetrics for generalized persistence modules
We consider the question of defining interleaving metrics on generalized persistence modules over arbitrary preordered sets. Our constructions are functorial, which implies a form of stability for these metrics. We describe a large class of examples, inverseimage persistence modules, which occur whenever a topological space is mapped to a metric space. Several standard theories of persistence a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Geometry: Theory and Applications
سال: 2022
ISSN: ['0925-7721', '1879-081X']
DOI: https://doi.org/10.1016/j.comgeo.2022.101879