On Hilbert modules over locally C*-algebras II

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hilbert modules over locally C*-algebras II

In this paper we study the unitary equivalence between Hilbert modules over a locally C∗-algebra. Also, we prove a stabilization theorem for countably generated modules over an arbitrary locally C∗-algebra and show that a Hilbert module over a Fréchet locally C∗-algebra is countably generated if and only if the locally C∗-algebra of all ”compact” operators has an approximate unit. 2000 Mathemat...

متن کامل

Hilbert modules over pro-C*-algebras

In this paper, we generalize some results from Hilbert C*-modules to pro-C*-algebra case. We also give a new proof of the known result that l2(A) is aHilbert module over a pro-C*-algebra A.

متن کامل

On Multipliers of Hilbert Modules over Locally C-algebras

In this paper, we investigate the structure of the multiplier module of a Hilbert module over a locally C∗-algebra and the relationship between the set of all adjointable operators from a Hilbert A -module E to a Hilbert A module F and the set of all adjointable operators from the multiplier module M(E) of E to the multiplier module M(F ) of F.

متن کامل

G-frames in Hilbert Modules Over Pro-C*-‎algebras

G-frames are natural generalizations of frames which provide more choices on analyzing functions from frame expansion coefficients. First, they were defined in Hilbert spaces and then generalized on C*-Hilbert modules. In this paper, we first generalize the concept of g-frames to Hilbert modules over pro-C*-algebras. Then, we introduce the g-frame operators in such spaces and show that they sha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Periodica Mathematica Hungarica

سال: 2005

ISSN: 0031-5303,1588-2829

DOI: 10.1007/s10998-005-0018-4