On Hessenberg and pentadiagonal determinants related with Fibonacci and Fibonacci-like numbers

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Energy of Graphs, Matroids and Fibonacci Numbers

The energy E(G) of a graph G is the sum of the absolute values of the eigenvalues of G. In this article we consider the problem whether generalized Fibonacci constants $varphi_n$ $(ngeq 2)$ can be the energy of graphs. We show that $varphi_n$ cannot be the energy of graphs. Also we prove that all natural powers of $varphi_{2n}$ cannot be the energy of a matroid.

متن کامل

Coefficient Bounds for Analytic bi-Bazileviv{c} Functions Related to Shell-like Curves Connected with Fibonacci Numbers

In this paper, we define and investigate a new class of bi-Bazilevic functions related to shell-like curves connected with Fibonacci numbers.  Furthermore, we find estimates of first two coefficients of functions belonging to this class. Also, we give the Fekete-Szegoinequality for this function class.

متن کامل

Restricted Permutations, Fibonacci Numbers, and k-generalized Fibonacci Numbers

In 1985 Simion and Schmidt showed that the number of permutations in Sn which avoid 132, 213, and 123 is equal to the Fibonacci number Fn+1. We use generating function and bijective techniques to give other sets of pattern-avoiding permutations which can be enumerated in terms of Fibonacci or k-generalized Fibonacci numbers.

متن کامل

Counting Determinants of Fibonacci-hessenberg Matrices Using Lu Factorizations

is a Hessenberg matrix and its determinant is F2n+2. Furthermore, a Hessenberg matrix is said to be a Fibonacci-Hessenberg matrix [2] if its determinant is in the form tFn−1 + Fn−2 or Fn−1 + tFn−2 for some real or complex number t. In [1] several types of Hessenberg matrices whose determinants are Fibonacci numbers were calculated by using the basic definition of the determinant as a signed sum...

متن کامل

Restricted Permutations Related to Fibonacci Numbers and k-Generalized Fibonacci Numbers

A permutation π ∈ Sn is said to avoid a permutation σ ∈ Sk whenever π contains no subsequence with all of the same pairwise comparisons as σ. In 1985 Simion and Schmidt showed that the number of permutations in Sn which avoid 123, 132, and 213 is the Fibonacci number Fn+1. In this paper we generalize this result in two ways. We first show that the number of permutations which avoid 132, 213, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Mathematics and Computation

سال: 2014

ISSN: 0096-3003

DOI: 10.1016/j.amc.2013.12.071