ON GENERIC SUBMANIFOLDS OF MANIFOLDS EQUIPPED WITH A HYPERCOSYMPLECTIC 3-STRUCTURE

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generic Submanifolds of Nearly Kaehler Manifolds with Certain Parallel Canonical Structure

The class of generic submanifold includes all real hypersurfaces, complex submanifolds, totally real submanifolds, and CR-submanifolds. In this paper we initiate the study of generic submanifolds in a nearly Kaehler manifold from differential geometric point of view. Some fundamental results in this paper will be obtained.

متن کامل

Generic flows on 3-manifolds

MSC (2010): 57R25 (primary); 57M20, 57N10, 57R15 (secondary). A 3-dimensional generic flow is a pair (M, v) with M a smooth compact oriented 3-manifold and v a smooth nowhere-zero vector field on M having generic behaviour along ∂M ; on the set of such pairs we consider the equivalence relation generated by topological equivalence (homeomorphism mapping oriented orbits to oriented orbits), and ...

متن کامل

Biminimal submanifolds in contact 3-manifolds

We study biminimal submanifolds in contact 3-manifolds. In particular, biminimal curves in homogeneous contact Riemannian 3manifolds and biminimal Hopf cylinders in Sasakian 3-space forms are investigated. M.S.C. 2000: 53C42, 53C25.

متن کامل

Generic Warped Product Submanifolds in Nearly Kaehler Manifolds

Warped product manifolds provide excellent setting to model space-time near black holes or bodies with large gravitational force (cf. [1], [2], [14]). Recently, results are published exploring the existence (or non-existence) of warped product submanifolds in Kaehlerian and contact settings (cf. [6], [17], [20]). To continue the sequel, we have considered warped product submanifolds of nearly K...

متن کامل

Statistical cosymplectic manifolds and their submanifolds

    In ‎this ‎paper‎, we introduce statistical cosymplectic manifolds and investigate some properties of their tensors. We define invariant and anti-invariant submanifolds and study invariant submanifolds with normal and tangent structure vector fields. We prove that an invariant submanifold of a statistical cosymplectic manifold with tangent structure vector field is a cosymplectic and minimal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications of the Korean Mathematical Society

سال: 2006

ISSN: 1225-1763

DOI: 10.4134/ckms.2006.21.2.321