On Generalized Fibonacci Polynomials: Horadam Polynomials

نویسندگان

چکیده

In this paper, we investigate the generalized Fibonacci (Horadam) polynomials and deal with, in detail, two special cases which call them $(r,s)$-Fibonacci $(r,s)$-Lucas polynomials. We present Binet's formulas, generating functions, Simson's summation formulas for these polynomial sequences. Moreover, give some identities matrices associated with Finally, several expressions combinatorial results of

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Generalized Fibonacci Polynomials

We introduce polynomial generalizations of the r-Fibonacci, r-Gibonacci, and rLucas sequences which arise in connection with two statistics defined, respectively, on linear, phased, and circular r-mino arrangements.

متن کامل

Generalized Bivariate Fibonacci Polynomials

We define generalized bivariate polynomials, from which specifying initial conditions the bivariate Fibonacci and Lucas polynomials are obtained. Using essentially a matrix approach we derive identities and inequalities that in most cases generalize known results. 1 Antefacts The generalized bivariate Fibonacci polynomial may be defined as Hn(x, y) = xHn−1(x, y) + yHn−2(x, y), H0(x, y) = a0, H1...

متن کامل

On convolved generalized Fibonacci and Lucas polynomials

We define the convolved hðxÞ-Fibonacci polynomials as an extension of the classical con-volved Fibonacci numbers. Then we give some combinatorial formulas involving the hðxÞ-Fibonacci and hðxÞ-Lucas polynomials. Moreover we obtain the convolved hðxÞ-Fibo-nacci polynomials from a family of Hessenberg matrices. Fibonacci numbers and their generalizations have many interesting properties and appli...

متن کامل

Generalized Fibonacci and Lucas Polynomials and Their Associated Diagonal Polynomials

Horadam [7], in a recent article, defined two sequences of polynomials Jn(x) and j„(x), the Jacobsthal and Jacobsthal-Lucas polynomials, respectively, and studied their properties. In the same article, he also defined and studied the properties of the rising and descending polynomials i^(x), rn(x), Dn(x)y and dn(x), which are fashioned in a manner similar to those for Chebyshev, Fermat, and oth...

متن کامل

HOMFLY Polynomials of Torus Links as Generalized Fibonacci Polynomials

The focus of this paper is to study the HOMFLY polynomial of (2, n)-torus link as a generalized Fibonacci polynomial. For this purpose, we first introduce a form of generalized Fibonacci and Lucas polynomials and provide their some fundamental properties. We define the HOMFLY polynomial of (2, n)-torus link with a way similar to our generalized Fibonacci polynomials and provide its fundamental ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Earthline Journal of Mathematical Sciences

سال: 2022

ISSN: ['2581-8147']

DOI: https://doi.org/10.34198/ejms.11123.23114