On Fully (m,n)-stable modules relative to an ideal A of

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ranks of modules relative to a torsion theory

Relative to a hereditary torsion theory $tau$ we introduce a dimension for a module $M$, called {em $tau$-rank of} $M$, which coincides with the reduced rank of $M$ whenever $tau$ is the Goldie torsion theory. It is shown that the $tau$-rank of $M$ is measured by the length of certain decompositions of the $tau$-injective hull of $M$. Moreover, some relations between the $tau$-rank of $M$ and c...

متن کامل

Some Generalizations of Fully Dual-Stable Modules

In a previous paper we introduce the concept of full d-stability, in this work several types of generalizations were introduced ; minimal (maximal) d-stable; fully pseudo d-stable and afd-stable module. A dual to the notion of terse module is, also, introduced namely d-terse and it is shown that it is coincide with fully pseudo d-stable.

متن کامل

F-regularity relative to modules

In this paper we will generalize  some of known results on the tight closure of an ideal to the tight closure of an ideal relative to a module .

متن کامل

on direct sums of baer modules

the notion of baer modules was defined recently

Oplus-supplemented modules with respect to images of a fully invariant submodule

Lifting modules and their various generalizations as some main concepts in module theory have been studied and investigated extensively in recent decades. Some authors tried to present some homological aspects of lifting modules and -supplemented modules. In this work, we shall present a homological approach to -supplemented modules via fully invariant submodules. Lifting modules and H-suppleme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Baghdad Science Journal

سال: 2015

ISSN: 2411-7986,2078-8665

DOI: 10.21123/bsj.12.2.400-405