On Fujita's freeness conjecture in dimension 5
نویسندگان
چکیده
منابع مشابه
On Keller's Conjecture in Dimension Seven
A cube tiling of R is a family of pairwise disjoint cubes [0, 1) + T = {[0, 1) + t : t ∈ T} such that ⋃ t∈T ([0, 1) d + t) = R. Two cubes [0, 1) + t, [0, 1) + s are called a twin pair if |tj − sj | = 1 for some j ∈ [d] = {1, . . . , d} and ti = si for every i ∈ [d] \ {j}. In 1930, Keller conjectured that in every cube tiling of R there is a twin pair. Keller’s conjecture is true for dimensions ...
متن کاملOn De Giorgi Conjecture in Dimension
A celebrated conjecture due to De Giorgi states that any bounded solution of the equation ∆u+(1−u2)u = 0 in RN with ∂yN u > 0 must be such that its level sets {u = λ} are all hyperplanes, at least for dimension N ≤ 8. A counterexample for N ≥ 9 has long been believed to exist. Based on a minimal graph Γ which is not a hyperplane, found by Bombieri, De Giorgi and Giusti in RN , N ≥ 9, we prove t...
متن کاملOn De Giorgi’s Conjecture in Dimension
A celebrated conjecture due to De Giorgi states that any bounded solution of the equation ∆u+(1−u2)u = 0 in RN with ∂yN u > 0 must be such that its level sets {u = λ} are all hyperplanes, at least for dimension N ≤ 8. A counterexample for N ≥ 9 has long been believed to exist. Starting from a minimal graph Γ which is not a hyperplane, found by Bombieri, De Giorgi and Giusti in RN , N ≥ 9, we pr...
متن کاملFujita's Freeness Conjecture in Terms of Local Cohomology
MIT Let X be a smooth projective algebraic variety of dimension (d ? 1) over a eld, and let ! denote its canonical sheaf. For any ample invertible O X-module L, Fujita's freeness conjecture predicts that ! L d is generated by its global sections, i.e. that the associated linear system of divisors is base point free F]. The purpose of this note is to reinterpret this conjecture as a statement ab...
متن کاملA short proof of the maximum conjecture in CR dimension one
In this paper and by means of the extant results in the Tanaka theory, we present a very short proof in the specific case of CR dimension one for Beloshapka's maximum conjecture. Accordingly, we prove that each totally nondegenerate model of CR dimension one and length >= 3 has rigidity. As a result, we observe that the group of CR automorphisms associated with each of such models contains onl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2020
ISSN: 0001-8708
DOI: 10.1016/j.aim.2020.107210