On fillings of $$\partial (V\times {\mathbb {D}})$$

نویسندگان

چکیده

We show that any symplectically aspherical/Calabi-Yau filling of $Y:=\partial(V\times \mathbb{D})$ has vanishing symplectic cohomology for Liouville domain $V$. In particular, we make no topological requirement on the and $c_1(V)$ can be nonzero. Moreover, $W$ $Y$, interior $\mathring{W}$ is diffeomorphic to $V\times \mathbb{D}$ if $\pi_1(Y)$ abelian $\dim V\ge 4$. And moreover Whitehead group trivial.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On symplectic fillings

In this note we make several observations concerning symplectic fillings. In particular we show that a (strongly or weakly) semi-fillable contact structure is fillable and any filling embeds as a symplectic domain in a closed symplectic manifold. We also relate properties of the open book decomposition of a contact manifold to its possible fillings. These results are also useful in showing the ...

متن کامل

On polynomial approximations over $\mathbb{Z}/2^k\mathbb{Z}$

We study approximation of Boolean functions by low-degree polynomials over the ring Z/2kZ. More precisely, given a Boolean function F : {0, 1}n → {0, 1}, define its k-lift to be Fk : {0, 1}n → {0, 2k−1} by Fk(x) = 2k−F(x) (mod 2k). We consider the fractional agreement (which we refer to as γd,k(F)) of Fk with degree d polynomials from Z/2 Z[x1, . . . , xn]. Our results are the following: • Incr...

متن کامل

On Codes over $\mathbb{F}_{q}+v\mathbb{F}_{q}+v^{2}\mathbb{F}_{q}$

In this paper we investigate linear codes with complementary dual (LCD) codes and formally self-dual codes over the ring $R=\F_{q}+v\F_{q}+v^{2}\F_{q}$, where $v^{3}=v$, for $q$ odd. We give conditions on the existence of LCD codes and present construction of formally self-dual codes over $R$. Further, we give bounds on the minimum distance of LCD codes over $\F_q$ and extend these to codes ove...

متن کامل

Hardness of almost embedding simplicial complexes in $\mathbb R^d$

A map f : K → R of a simplicial complex is an almost embedding if f(σ) ∩ f(τ) = ∅ whenever σ, τ are disjoint simplices of K. Theorem. Fix integers d, k ≥ 2 such that d = 3k 2 + 1. (a) Assume that P 6= NP . Then there exists a finite k-dimensional complex K that does not admit an almost embedding in R but for which there exists an equivariant map K̃ → Sd−1. (b) The algorithmic problem of recognit...

متن کامل

Lattices from codes over $\mathbb{Z}_n$: Generalization of Constructions $D$, $D'$ and $\overline{D}$

In this paper, we extend the lattice Constructions D, D′ and D (this latter is also known as Forney’s code formula) from codes over Fp to linear codes over Zq, where q ∈ N. We define an operation in Zq called zero-one addition, which coincides with the Schur product when restricted to Z2 and show that the extended Construction D produces a lattice if and only if the nested codes are closed unde...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2022

ISSN: ['1432-1807', '0025-5831']

DOI: https://doi.org/10.1007/s00208-022-02373-0