On Exponential Sums with Sparse Polynomials and Rational Functions

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exponential sums with Dickson polynomials

We give new bounds of exponential sums with sequences of iterations of Dickson polynomials over prime finite fields. This result is motivated by possible applications to polynomial generators of pseudorandom numbers. © 2004 Elsevier Inc. All rights reserved.

متن کامل

Sparse Polynomial Exponential Sums

(1.2) f(x) = a1x k1 + · · ·+ arx with 0 < k1 < k2 < · · · < kr. We assume always that the content of f , (a1, a2, . . . , ar), is relatively prime to the modulus q. Let d = d(f) = kr denote the degree of f and for any prime p let dp(f) denote the degree of f read modulo p. A fundamental problem is to determine whether there exists an absolute constant C such that for an arbitrary positive integ...

متن کامل

Bilinear Sums with Exponential Functions

Let g = 0,±1 be a fixed integer. Given two sequences of complex numbers (φm) ∞ m=1 and (ψn) ∞ n=1 and two sufficiently large integers M and N , we estimate the exponential sums ∑ p≤M gcd(ag,p)=1 ∑ 1≤n≤N φpψnep (ag ) , a ∈ Z, where the outer summation is taken over all primes p ≤ M with gcd(ag, p) = 1.

متن کامل

Using Stepanov’s Method for Exponential Sums Involving Rational Functions

For a non-trivial additive character ψ and multiplicative character χ on a finite field Fq , and rational functions f, g in Fq(x), we show that the elementary Stepanov-Schmidt method can be used to obtain the corresponding Weil bound for the sum ∑ x∈Fq\S χ(g(x))ψ(f(x)) where S is the set of the poles of f and g. We also determine precisely the number of characteristic values ωi of modulus q1/2 ...

متن کامل

VC Dimension and Learnability of Sparse Polynomials and Rational Functions

We prove upper and lower bounds on the VC dimension of sparse univariate polynomi-als over reals, and apply these results to prove uniform learnability of sparse polynomials and rational functions. As another application we solve an open problem of Vapnik ((Vap-nik 82]) on uniform approximation of the general regression functions, a central problem of computational statistics (cf. Vapnik 82]), ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Number Theory

سال: 1996

ISSN: 0022-314X

DOI: 10.1006/jnth.1996.0121