On eigenvalues of a high-dimensional spatial-sign covariance matrix

نویسندگان

چکیده

This paper investigates limiting spectral properties of a high-dimensional sample spatial-sign covariance matrix when both the dimension observations and size grow to infinity. The underlying population is general enough include popular independent components model family elliptical distributions. first result shows that empirical distribution high dimensional converges generalized Marčenko-Pastur distribution. Secondly, new central limit theorem for class related linear statistics established.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High dimensional covariance matrix estimation using a factor model

High dimensionality comparable to sample size is common in many statistical problems. We examine covariance matrix estimation in the asymptotic framework that the dimensionality p tends to∞ as the sample size n increases. Motivated by the Arbitrage Pricing Theory in finance, a multi-factor model is employed to reduce dimensionality and to estimate the covariance matrix. The factors are observab...

متن کامل

Eigenvalues of the sample covariance matrix for a towed array.

It is well known that observations of the spatial sample covariance matrix (SCM, also called the cross-spectral matrix) reveal that the ordered noise eigenvalues of the SCM decay steadily, but common models predict equal noise eigenvalues. Random matrix theory (RMT) is used to derive and discuss properties of the eigenvalue spectrum of the data SCM for linear arrays, with an application to ocea...

متن کامل

Random matrix theory and estimation of high-dimensional covariance matrices

This projects aims to present significant results of random matrix theory in regards to the principal component analysis, including Wigner’s semicircular law and Marčenko-Pastur law describing limiting distribution of large dimensional random matrices. The work bases on the large dimensional data assumptions, where both the number of variables and sample size tends to infinity, while their rati...

متن کامل

High Dimensional Inverse Covariance Matrix Estimation via Linear Programming

This paper considers the problem of estimating a high dimensional inverse covariance matrix that can be well approximated by “sparse” matrices. Taking advantage of the connection between multivariate linear regression and entries of the inverse covariance matrix, we propose an estimating procedure that can effectively exploit such “sparsity”. The proposed method can be computed using linear pro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2022

ISSN: ['1573-9759', '1350-7265']

DOI: https://doi.org/10.3150/21-bej1360