On eigenvalue multiplicity in signed graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenvalue Multiplicity in Cubic Graphs

Let G be a connected cubic graph of order n with μ as an eigenvalue of multiplicity k. We show that (i) if μ 6∈ {−1, 0} then k ≤ 12n, with equality if and only if μ = 1 and G is the Petersen graph; (ii) If μ = −1 then k ≤ 12n + 1, with equality if and only if G = K4; (iii) If μ = 0 then k ≤ 12n+ 1, with equality if and only if G = 2K3. AMS Classification: 05C50

متن کامل

The (normalized) Laplacian Eigenvalue of Signed Graphs

Abstract. A signed graph Γ = (G, σ) consists of an unsigned graph G = (V, E) and a mapping σ : E → {+,−}. Let Γ be a connected signed graph and L(Γ),L(Γ) be its Laplacian matrix and normalized Laplacian matrix, respectively. Suppose μ1 ≥ · · · ≥ μn−1 ≥ μn ≥ 0 and λ1 ≥ · · · ≥ λn−1 ≥ λn ≥ 0 are the Laplacian eigenvalues and the normalized Laplacian eigenvalues of Γ, respectively. In this paper, ...

متن کامل

Nodal domain and eigenvalue multiplicity of graphs

Let G = (V,E) be a graph with vertex set V = {1, . . . , n} and edge set E. Throughout the paper, a graph G is undirected and simple (i.e., has no multi-edges or loops). We allow G to be disconnected. The Laplacian of G is the matrix L(G) = D−A, where D is the diagonal matrix whose entries are the degree of the vertices and A is the adjacency matrix of G. Chung’s normalized Laplacian L̃(G) [6] i...

متن کامل

On graphs with an eigenvalue of maximal multiplicity

Let G be a graph of order n with an eigenvalue μ 6= −1, 0 of multiplicity k < n − 2. It is known that k ≤ n + 12 − √ 2n+ 14 , equivalently k ≤ 12 t(t − 1), where t = n − k > 2. The only known examples with k = 12 t(t − 1) are 3K2 (with n = 6, μ = 1, k = 3) and the maximal exceptional graph G36 (with n = 36, μ = −2, k = 28). We show that no other example can be constructed from a strongly regula...

متن کامل

On net-Laplacian Energy of Signed Graphs

A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2020

ISSN: 0012-365X

DOI: 10.1016/j.disc.2020.111982