On Drinfeld modular forms of higher rank IV: Modular forms with level
نویسندگان
چکیده
منابع مشابه
Higher congruences between modular forms
It is well-known that two modular forms on the same congruence subgroup and of the same weight, with coefficients in the integer ring of a number field, are congruent modulo a prime ideal in this integer ring, if the first B coefficients of the forms are congruent modulo this prime ideal, where B is an effective bound depending only on the congruence subgroup and the weight of the forms. In thi...
متن کاملHigher Congruences Between Modular Forms
Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your perso...
متن کاملLevel-one elliptic modular forms
[1] Traditional terminology is that f → f |2kγ is the slash operator, although this name fails to suggest any meaning other than reference to the notation itself. In fact, obviously f(z)→ f(γz)(cz + d)−2k is a left translation operator, albeit complicated by the automorphy factor. That is, this is a right action of SL2(Z) on functions on H, while the group action of SL2(Z) on H is written on th...
متن کاملTopological modular forms with level structure
The cohomology theory known as Tmf, for “topological modular forms,” is a universal object mapping out to elliptic cohomology theories, and its coefficient ring is closely connected to the classical ring of modular forms. We extend this to a functorial family of objects corresponding to elliptic curves with level structure and modular forms on them. Along the way, we produce a natural way to re...
متن کاملHarmonic Maass Forms, Mock Modular Forms, and Quantum Modular Forms
This short course is an introduction to the theory of harmonic Maass forms, mock modular forms, and quantum modular forms. These objects have many applications: black holes, Donaldson invariants, partitions and q-series, modular forms, probability theory, singular moduli, Borcherds products, central values and derivatives of modular L-functions, generalized Gross-Zagier formulae, to name a few....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2019
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2019.04.019