On digraphs with polygonal restricted numerical range
نویسندگان
چکیده
In 2020, Cameron et al. introduced the restricted numerical range of a digraph (directed graph) as tool for characterizing digraphs and studying their algebraic connectivity. Notably, with degenerate polygon (that is, point or line segment) were completely described. this article, we extend those results to include whose is non-degenerate convex polygon. general, refer polygonal. We provide computational methods identifying these polygonal show that they can be broken into three disjoint classes: normal, restricted-normal, pseudo-normal digraphs. Sufficient conditions normal are provided, directed join two in restricted-normal digraph. Moreover, prove joins only when order square-free twice number. Finally, construct not all orders neither nor
منابع مشابه
On Restricted Arc-connectivity of Regular Digraphs
The restricted arc-connectivity λ′ of a strongly connected digraph G is the minimum cardinality of an arc cut F in G such that every strongly connected component of G−F contains at least two vertices. This paper shows that for a d-regular strongly connected digraph with order n and diameter k ≥ 4, if λ′ exists, then λ′(G) ≥ min { (n − dk−1)(d− 1) dk−1 + d− 2 , 2d− 2 } As consequences, the restr...
متن کاملOn the decomposable numerical range of operators
Let $V$ be an $n$-dimensional complex inner product space. Suppose $H$ is a subgroup of the symmetric group of degree $m$, and $chi :Hrightarrow mathbb{C} $ is an irreducible character (not necessarily linear). Denote by $V_{chi}(H)$ the symmetry class of tensors associated with $H$ and $chi$. Let $K(T)in (V_{chi}(H))$ be the operator induced by $Tin text{End}(V)$. Th...
متن کاملSome results on the block numerical range
The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولRestricted Edge-Connectivity of de Bruijn Digraphs
The restricted edge-connectivity of a graph is an important parameter to measure fault-tolerance of interconnection networks. This paper determines that the restricted edge-connectivity of the de Bruijn digraph B(d, n) is equal to 2d − 2 for d ≥ 2 and n ≥ 2 except B(2, 2). As consequences, the super edge-connectedness of B(d, n) is obtained immediately.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2022
ISSN: ['1873-1856', '0024-3795']
DOI: https://doi.org/10.1016/j.laa.2022.02.034