On diagonal operators between the sequence (LF)-spaces $$l_p({\mathcal {V}})$$
نویسندگان
چکیده
Abstract Diagonal (multiplication) operators acting between a particular class of countable inductive spectra Fréchet sequence spaces, called (LF)-spaces, are investigated. We prove results concerning boundedness, compactness, power and mean ergodicity. Furthermore, we determine when diagonal operator is Montel reflexive. analyze the in terms system weights defining spaces.
منابع مشابه
Diagonal operators on spaces of measurable functions
© Mémoires de la S. M. F., 1972, tous droits réservés. L’accès aux archives de la revue « Mémoires de la S. M. F. » (http:// smf.emath.fr/Publications/Memoires/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impress...
متن کاملOn diagonal subdifferential operators in nonreflexive Banach spaces
Consider a real-valued bifunction f defined on C×C, where C is a closed and convex subset of a Banach space X , which is concave in its first argument and convex in its second one. We study its subdifferential with respect to the second argument, evaluated at pairs of the form (x, x), and the subdifferential of −f with respect to its first argument, evaluated at the same pairs. We prove that if...
متن کاملOn compact operators on the Riesz -difference sequence spaces-II
The compact operators on the Riesz sequence space 1 ∞ have been studied by Başarır and Kara, “IJST (2011) A4, 279-285”. In the present paper, we will characterize some classes of compact operators on the normed Riesz sequence spaces and by using the Hausdorff measure of noncompactness.
متن کاملOff-diagonal Multilinear Interpolation between Adjoint Operators
We extend a theorem by Grafakos and Tao [4] on multilinear interpolation between adjoint operators to an off-diagonal situation. We provide an application.
متن کاملLocalization operators on homogeneous spaces
Let $G$ be a locally compact group, $H$ be a compact subgroup of $G$ and $varpi$ be a representation of the homogeneous space $G/H$ on a Hilbert space $mathcal H$. For $psi in L^p(G/H), 1leq p leqinfty$, and an admissible wavelet $zeta$ for $varpi$, we define the localization operator $L_{psi,zeta} $ on $mathcal H$ and we show that it is a bounded operator. Moreover, we prove that the localizat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Revista De La Real Academia De Ciencias Exactas Fisicas Y Naturales Serie A-matematicas
سال: 2022
ISSN: ['1578-7303', '1579-1505']
DOI: https://doi.org/10.1007/s13398-022-01284-8