منابع مشابه
The Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
متن کاملp-Laplacian problems with critical Sobolev exponent
We use variational methods to study the asymptotic behavior of solutions of p-Laplacian problems with nearly subcritical nonlinearity in general, possibly non-smooth, bounded domains.
متن کاملNontrivial solutions for p-Laplacian systems
The paper deals with the existence and nonexistence of nontrivial nonnegative solutions for the sublinear quasilinear system div (|∇ui |p−2∇ui)+ λfi(u1, . . . , un)= 0 in Ω, ui = 0 on ∂Ω, i = 1, . . . , n, where p > 1, Ω is a bounded domain in RN (N 2) with smooth boundary, and fi , i = 1, . . . , n, are continuous, nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1 |ui |, we prove t...
متن کاملPositive radial solutions for p-Laplacian systems
The paper deals with the existence of positive radial solutions for the p-Laplacian system div(|∇ui| ∇ui) + f (u1, . . . , un) = 0, |x| < 1, ui(x) = 0, on |x| = 1, i = 1, . . . , n, p > 1, x ∈ R . Here f , i = 1, . . . , n, are continuous and nonnegative functions. Let u = (u1, . . . , un), ‖u‖ = ∑n i=1|ui|, f i 0 = lim‖u‖→0 f(u) ‖u‖p−1 , f i ∞ = lim‖u‖→∞ f(u) ‖u‖p−1 , i = 1, . . . , n, f = (f1...
متن کاملCritical fractional p-Laplacian problems with possibly vanishing potentials
Article history: Received 8 April 2015 Available online 12 August 2015 Submitted by R.G. Durán
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advanced Nonlinear Studies
سال: 2017
ISSN: 2169-0375,1536-1365
DOI: 10.1515/ans-2017-6029