On counting Z-convex polyominoes
نویسندگان
چکیده
Abstract We show a decomposition that allows to compute the number of convex polyominoes area n and degree convexity at most 2 (the so-called Z-convex polyominoes) in polynomial time.
منابع مشابه
Counting k-Convex Polyominoes
We compute an asymptotic estimate of a lower bound of the number of k-convex polyominoes of semiperimeter p. This approximation can be written as μ(k)p4p where μ(k) is a rational fraction of k which up to μ(k) is the asymptotics of convex polyominoes. A polyomino is a connected set of unit square cells drawn in the plane Z × Z [7]. The size of a polyomino is the number of its cells. A central p...
متن کاملThe number of Z-convex polyominoes
In this paper we consider a restricted class of polyominoes that we call Z-convex polyominoes. Z-convex polyominoes are polyominoes such that any two pairs of cells can be connected by a monotone path making at most two turns (like the letter Z). In particular they are convex polyominoes, but they appear to resist standard decompositions. We propose a construction by “inflation” that allows us,...
متن کاملCounting Directed-convex Polyominoes According to Their Perimeter
An approach is presented for the enumeration of directed-convex polyominos that are not parallelogram polyominoes and we establish that there are ( 2n n−2 ) with a perimeter of 2n + 4. Finally using known results we prove that there are ( 2n n ) directed-convex polyominos with a perimeter of 2n + 4.
متن کاملOn the generation of convex polyominoes
We present a simple but efficient method for generating the set LPol(n) of L-convex polyominoes of size n. We show a bijection between LPol(n) and a suitable set of pairs of integer sequences. This lets us design a CAT (Constant Amortized Time) algorithm for generating LPol(n) using O( √ n) space.
متن کاملReconstruction of 2-convex polyominoes
There are many notions of discrete convexity of polyominoes (namely hvconvex [1], Q-convex [2], L-convex polyominoes [5]) and each one has been deeply studied. One natural notion of convexity on the discrete plane leads to the definition of the class of hv-convex polyominoes, that is polyominoes with consecutive cells in rows and columns. In [1] and [6], it has been shown how to reconstruct in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pure mathematics and applications
سال: 2022
ISSN: ['1218-4586', '1788-800X']
DOI: https://doi.org/10.2478/puma-2022-0014