منابع مشابه
Compact Einstein-Weyl four-dimensional manifolds
We look for complete four dimensional Einstein-Weyl spaces equipped with a Bianchi metric. Using the explicit 4-parameters expression of the distance obtained in a previous work for non-conformally-Einstein Einstein-Weyl structures, we show that four 1-parameter families of compact metrics exist : they are all of Bianchi IX type and conformally Kähler ; moreover, in agreement with general resul...
متن کاملConstruction of conformally compact Einstein manifolds
We produce some explicit examples of conformally compact Einstein manifolds, whose conformal compactifications are foliated by Riemannian products of a closed Einstein manifold with the total space of a principal circle bundle over products of Kähler-Einstein manifolds. We compute the associated conformal invariants, i.e., the renormalized volume in even dimensions and the conformal anomaly in ...
متن کاملRicci Curvature Bounds and Einstein Metrics on Compact Manifolds
dL(Mo,M1) = inf[llogdil/l + Ilogdil/-II], f where I: Mo -+ MI is a homeomorphism and dil I is the dilatation of I given by dill = SUPXt#2 dist(f(x l ), l(x2))/ dist(x1 ,x2). If Mo and MI are not homeomorphic, define dL(Mo,M1) = +00. Gromov [20] proves the remarkable result that the space of compact Riemannian manifolds L(A,t5 ,D) of sectional curvature IKI :::; A, injectivity radius i M 2: t5 >...
متن کاملOn the Rigidity for Conformally Compact Einstein Manifolds
In this paper we prove that a conformally compact Einstein manifold with the round sphere as its conformal infinity has to be the hyperbolic space. We do not assume the manifolds to be spin, but our approach relies on the positive mass theorem for asymptotic flat manifolds. The proof is based on understanding of positive eigenfunctions and compactifications obtained by positive eigenfunctions. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1975
ISSN: 0002-9939
DOI: 10.2307/2040393