On commutativity in certain rings

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Commutativity for a Certain Class of Rings

We discuss the commutativity of certain rings with unity 1 and one-sided s-unital rings under each of the following conditions: xr[xs, y] = ±[x, yt]xn, xr[xs, y] = ±xn[x, yt], xr[xs, y] = ±[x, yt]ym, and xr[xs, y] = ±ym[x, yt], where r, n, and m are non-negative integers and t > 1, s are positive integers such that either s, t are relatively prime or s[x, y] = 0 implies [x, y] = 0. Further, we ...

متن کامل

On Commutativity of Semiperiodic Rings

Let R be a ring with center Z, Jacobson radical J , and set N of all nilpotent elements. Call R semiperiodic if for each x ∈ R\ (J ∪Z), there exist positive integers m, n of opposite parity such that x − x ∈ N . We investigate commutativity of semiperiodic rings, and we provide noncommutative examples. Mathematics Subject Classification (2000). 16U80.

متن کامل

On derivations and commutativity in prime rings

Let R be a prime ring of characteristic different from 2, d a nonzero derivation of R, and I a nonzero right ideal of R such that [[d(x), x], [d(y), y]] = 0, for all x, y ∈ I. We prove that if [I, I]I ≠ 0, then d(I)I = 0. 1. Introduction. Let R be a prime ring and d a nonzero derivation of R. Define [x, y] 1 = [x, y] = xy − yx, then an Engel condition is a polynomial [x, y] k = [[x, y] k−1 ,y]

متن کامل

A COMMUTATIVITY CONDITION FOR RINGS

In this paper, we use the structure theory to prove an analog to a well-known theorem of Herstein as follows: Let R be a ring with center C such that for all x,y ? R either [x,y]= 0 or x-x [x,y]? C for some non negative integer n= n(x,y) dependingon x and y. Then R is commutative.

متن کامل

Remarks on the Commutativity of Rings

Introduction. A celebrated theorem of N. Jacobson [7] asserts that if (1) x*(x) =x for every x in a ring R, where n(x) is an integer greater than one, then R is commutative. In a recent paper [2], I. N. Herstein has shown that it is enough to require that (1) holds for those x in R which are commutators: x= [y, z]=yz — zy of two elements of R. The purpose of this note is to show that if R has n...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 1970

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700041654