On closed modular colorings of rooted trees

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On closed modular colorings of trees

Two vertices u and v in a nontrivial connected graph G are twins if u and v have the same neighbors in V (G) − {u, v}. If u and v are adjacent, they are referred to as true twins; while if u and v are nonadjacent, they are false twins. For a positive integer k, let c : V (G) → Zk be a vertex coloring where adjacent vertices may be assigned the same color. The coloring c induces another vertex c...

متن کامل

4-PLACEMENT OF ROOTED TREES

A tree T of order n is called k-placement if there are k edge-disjoint copies of T into K_{n}. In this paper we prove some results about 4-placement of rooted trees.

متن کامل

Random Walks on Rooted Trees

For arbitrary positive integers h and m, we consider the family of all rooted trees of height h having exactly m vertices at distance h from the root. We refer to such trees as (h,m)-trees. For a tree T from this family, we consider a simple random walk on T which starts at the root and terminates when it visits one of the m vertices at distance h from the root. Consider the problem of finding ...

متن کامل

Reconstruction for Colorings on Trees

Consider k-colorings of the complete tree of depth l and branching factor ∆. If we fix the coloring of the leaves, for what range of k is the root uniformly distributed over all k colors (in the limit l → ∞)? This corresponds to the threshold for uniqueness of the infinite-volume Gibbs measure. It is straightforward to show the existence of colorings of the leaves which “freeze” the entire tree...

متن کامل

modular edge colorings of mycielskian graphs

let $g$ be a connected graph of order $3$ or more and $c:e(g)rightarrowmathbb{z}_k$‎ ‎($kge 2$) a $k$-edge coloring of $g$ where adjacent edges may be colored the same‎. ‎the color sum $s(v)$ of a vertex $v$ of $g$ is the sum in $mathbb{z}_k$ of the colors of the edges incident with $v.$ the $k$-edge coloring $c$ is a modular $k$-edge coloring of $g$ if $s(u)ne s(v)$ in $mathbb{z}_k$ for all pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Involve, a Journal of Mathematics

سال: 2013

ISSN: 1944-4184,1944-4176

DOI: 10.2140/involve.2013.6.83