On classes of T0 spaces admitting completions
نویسندگان
چکیده
منابع مشابه
On Classes of Banach Spaces Admitting “small” Universal Spaces
We characterize those classes C of separable Banach spaces admitting a separable universal space Y (that is, a space Y containing, up to isomorphism, all members of C) which is not universal for all separable Banach spaces. The characterization is a byproduct of the fact, proved in the paper, that the class NU of non-universal separable Banach spaces is strongly bounded. This settles in the aff...
متن کاملCompletions of Pro-spaces
For every ring R, we present a pair of model structures on the category of pro-spaces. In the first, the weak equivalences are detected by cohomology with coefficients in R. In the second, the weak equivalences are detected by cohomology with coefficients in all R-modules (or equivalently by pro-homology with coefficients in R). In the second model structure, fibrant replacement is essentially ...
متن کاملStrong completions of spaces
A non-empty subset of a topological space is irreducible if whenever it is covered by the union of two closed sets, then already it is covered by one of them. Irreducible sets occur in proliferation: (1) every singleton set is irreducible, (2) directed subsets (which of fundamental status in domain theory) of a poset are exactly its Alexandroff irreducible sets, (3) directed subsets (with respe...
متن کاملMeasure Extension Theorems for T0-spaces
The theme of this paper is the extension of continuous valuations on the lattice of open sets of a T0-space to Borel measures. A general extension principle is derived that provides a unified approach to a variety of extension theorems including valuations that are directed suprema of simple valuations, continuous valuations on locally compact sober spaces, and regular valuations on coherent so...
متن کاملHomogeneous spaces admitting transitive semigroups
Let G be a semi-simple Lie group with finite center and S ⊂ G a semigroup with intS 6= Ø . A closed subgroup L ⊂ G is said to be S -admissible if S is transitive in G/L . In [10] it was proved that a necessary condition for L to be S -admissible is that its action in B (S) is minimal and contractive where B (S) is the flag manifold associated with S , as in [9]. It is proved here, under an addi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied General Topology
سال: 2003
ISSN: 1989-4147,1576-9402
DOI: 10.4995/agt.2003.2016