On certain graded Sn-modules and the q-Kostka polynomials
نویسندگان
چکیده
منابع مشابه
SOME NATURAL BIGRADED Sn-MODULES and q,t-KOSTKA COEFFICIENTS
We construct for each μ ` n a bigraded Sn-module Hμ and conjecture that its Frobenius characteristic Cμ(x; q, t) yields the Macdonald coefficients Kλμ(q, t). To be precise, we conjecture that the expansion of Cμ(x; q, t) in terms of the Schur basis yields coefficients Cλμ(q, t) which are related to the Kλμ(q, t) by the identity Cλμ(q, t) = Kλμ(q, 1/t)t. The validity of this would give a represe...
متن کاملThe Artinian property of certain graded generalized local chohomology modules
Let $R=oplus_{nin Bbb N_0}R_n$ be a Noetherian homogeneous ring with local base ring $(R_0,frak{m}_0)$, $M$ and $N$ two finitely generated graded $R$-modules. Let $t$ be the least integer such that $H^t_{R_+}(M,N)$ is not minimax. We prove that $H^j_{frak{m}_0R}(H^t_{R_+}(M,N))$ is Artinian for $j=0,1$. Also, we show that if ${rm cd}(R_{+},M,N)=2$ and $tin Bbb N_0$, then $H^t_{frak{m}_0R}(H^2_...
متن کاملOn p-Kostka numbers and Young modules
The combinatorial properties of Young modules corresponding to maximal Young subgroups are studied: an explicit formula for p-Kostka numbers is given, and as applications, the ordinary characters of Young modules are described and a branching rule for Young modules is determined. Moreover, for certain n-part partitions the reduction formulas for p-Kostka numbers given in A. Henke, S. Koenig [Re...
متن کاملPaths and Kostka–macdonald Polynomials
We give several equivalent combinatorial descriptions of the space of states for the box-ball systems, and connect certain partition functions for these models with the q-weight multiplicities of the tensor product of the fundamental representations of the Lie algebra gl(n). As an application, we give an elementary proof of the special case t = 1 of the Haglund–Haiman–Loehr formula. Also, we pr...
متن کاملThe Bailey Lemma and Kostka Polynomials
Using the theory of Kostka polynomials, we prove an An−1 version of Bailey’s lemma at integral level. Exploiting a new, conjectural expansion for Kostka numbers, this is then generalized to fractional levels, leading to a new expression for admissible characters of A n−1 and to identities for A-type branching functions.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 1992
ISSN: 0001-8708
DOI: 10.1016/0001-8708(92)90034-i